Optimization of coupled driving-and-charging strategies for EV in urban environment

Benoit Sohet1,2, Yezekael Hayel2
Olivier Beaude1, Alban Jeandin3, Jean-Baptiste Breal1

1 EDF R\&D, MIRE & OSIRIS Dept., EDF Lab Paris-Saclay
2 LIA/CERI, University of Avignon
3 Izivia, EDF Group

benoit.sohet@edf.fr

Electric mobility and territories
April 8
Context: Coupled electrical and transportation systems

Electrical System

Electric Power Industry (Generation, Transmission and Distribution Operators)
- Fossil fuel backups
- Transmission congestion
- Electrical connections

Transportation System

Transportation Network Operator
- Minimize local air pollution
- Minimize traffic congestion

Charging Stations Operators
- Maximize profits
- Ensure Quality of Service

Electric Vehicles

B. Sohet, Y. Hayel, O. Beaude, A. Jeandin, JB. Breal

Evaluation of Coupled Driving & Charging Incentives for EV
Context: Coupled electrical and transportation systems

Electrical System
- Electric Power Industry (Generation, Transmission and Distribution Operators)
 - Fossil fuel backups
 - Transmission congestion
 - Electrical connections

Transportation System
- Transportation Network Operator
 - Minimize local air pollution
 - Minimize traffic congestion

Charging Stations Operators
- Maximize profits
- Ensure Quality of Service

Electric Vehicles
- Smart charging

Additional Points
- Bans of polluting vehicles
- Multimodal hubs
A group of Electric and Gasoline Vehicles (EV and GV) arrives at an e-Park & Ride hub. They can either:

1. Park and charge at the hub with its PhotoVoltaic (PV) solar panels, and take Public Transport (PT);
2. Drive all the way to the city center.
A group of Electric and Gasoline Vehicles (EV and GV) arrives at an e-Park & Ride hub. They can either:

1. Park and charge at the hub with its Photovoltaic (PV) solar panels, and take Public Transport (PT);
2. Drive all the way to the city center.

Hyp.: Same operator

Electric Power Industry

e-Park & Ride hub Operator

Schedules charging operation

Incentives

\[\lambda_e = f(L_e, PV) \]

\(\lambda_e \) = Charging unit price at hub

\(L_e \) = Total charging need at hub

Transportation Network Operator

PT ticket fare

Electric Vehicles
publ Pay for energy consumed to get to the hub and take Public Transport

priv Drive into congested city center and pay for total energy consumed
publ Pay for energy consumed to get to the hub and take Public Transport

priv Drive into congested city center and pay for total energy consumed

<table>
<thead>
<tr>
<th>Transport mode</th>
<th>Travel duration</th>
<th>Consumption cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public</td>
<td>• Constant</td>
<td>• Charging price depends on EV nb + Constant PT fare</td>
</tr>
<tr>
<td>Private</td>
<td>• Depends on vehicles nb (congestion) → BPR function</td>
<td>• Constant (distance-dependent)</td>
</tr>
</tbody>
</table>

Equilibrium

Stable situation between strategic decision-makers
EV model: Game theory

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ_e</td>
<td>Charging unit price</td>
</tr>
<tr>
<td>L_e</td>
<td>Total charging need at hub</td>
</tr>
<tr>
<td>m_e</td>
<td>Energy consumption per distance unit</td>
</tr>
<tr>
<td>$x_{e,m}$</td>
<td>Number of EVs in mode m</td>
</tr>
</tbody>
</table>

Charging impacts driving

At hub, charging unit price λ_e depends on total charging need L_e

\[\lambda_e(L_e) \]

Driving impacts charging

Total charging need at hub L_e depends on total driving distance

\[L_e = m_e \times l_{publ} \times x_{e,publ} \]

Equilibrium

Stable situation between strategic decision-makers
At the hub, the operator schedules the charging operation to minimize the costs G related to peak demand.

- **Constraint:** Total charging need L_e (\propto EV nb at hub)
- **Control:** Aggregated charging profile $(\ell_{e,t})_t$

\[\sum_{t=1}^{T} \ell_{e,t} = L_e \]
At the hub, the operator schedules the charging operation to minimize the costs G related to peak demand.

- **Constraint:** Total charging need L_e (\propto EV nb at hub)
- **Control:** Aggregated charging profile $(\ell_{e,t})_t$

 s.t. $\sum_{t=1}^{T} \ell_{e,t} = L_e$

- **Input:** PhotoVoltaic production p_t at time slot t and total production $E = \sum_{t=1}^{T} p_t$
At the hub, the operator schedules the charging operation to minimize the costs G related to peak demand.

- **Constraint:** Total charging need L_e (\propto EV nb at hub)
- **Control:** Aggregated charging profile $(l_{e,t})_t$

 \[
 \sum_{t=1}^{T} l_{e,t} = L_e
 \]
- **Input:** PhotoVoltaic production p_t
 at time slot t and total production

 \[
 E = \sum_{t=1}^{T} p_t
 \]
- **Objective:** Minimize hourly electricity distribution costs f

\[
 f(l_t) = \eta l_t^2
\]

\[
 f(l_t) = 0
\]

\[
 l_t = -p_t + l_{e,t}
\]
- Minimal distribution costs:
 \[G^* (L_e) = \begin{cases}
 0, & \text{if } L_e \leq E \\
 \frac{n}{8} (-E + L_e)^2, & \text{if } L_e > E
 \end{cases} \]

- EV pay equally for the grid costs:
 \[\lambda_e (L_e) = \lambda_{\text{cst}} + \frac{G^* (L_e)}{L_e} \]
Charging unit price

- Minimal distribution costs:
 \[G^*(L_e) = \begin{cases} 0, & \text{if } L_e \leq E \\ \frac{\eta}{8}(-E + L_e)^2, & \text{if } L_e > E \end{cases} \]

- EV pay equally for the grid costs:
 \[\lambda_e(L_e) = \lambda_{\text{cst}} + \frac{G^*(L_e)}{L_e} \]

- PV panels located in Paris\(^a\)
- Hub charging service cheaper from March to October
- Depending on EV proportion at hub, charging may be free or not (see end of June)

\(^a\)https://www.renewables.ninja/
Sensitivity analysis: Public Transport fare

Figure: Equilibrium computed for any PT fare

- More EV than GV at hub thanks to charging incentives (PV production cheaper than electricity from the grid)
- $0.50\,\text{€}$ in PT fare $\rightarrow +25\%$ of EV at the hub
Hub operator payoff (with 500 EV)

\[\Pi = -I + T \times (R - G), \]

- \(I \) = Initial Investment in PV = 750€/kWp
- \(T \) = Period of time considered
- \(R \) = Revenues from EV charging = \(L_e \lambda_e \)
- \(G \) = Grid costs

The first solar panels are profitable because the grid costs avoided compensate for the investments.

Optimal nominal power equivalent to a PV surface of 39 parking spots.
Conclusion

Summary

- **Model:** EV coupled behavior while driving and charging
- **Scenario:** Multimodal hub with PhotoVoltaic production
- **Use:** Design of Public Transport fare and PV surface