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Clustering?

Detect hidden structures in data sets
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Clustering everywhere

Regression, Cluster Analysis, & Decision Trees: The Core Algorithm Triad (R;)

€@ What algorithms/analytic methods do you TYPICALLY use?

[S—
10%
o

15% 1%

Anomaly Detection 13% 18% 12%
Propn 14%

Random Forests

Bayesin Methods
Survival Analysis
Association Rules %
Monte Carlo Methods 9% 18%
Support Vector Machines (VM)
Social Network Analysis
Deep Lesming
Uptt Modeng
Rule Induction
Link Analyss
Genetic & Evolutionary Algorithms
wags
@ Mostofthetime @ Ofien @ Sometimes @ Rarely
©2018 Rexer Analytics

Rexer Analytics’ surveys since 2007 have
consistently shown that data scientists primarily
work with the algorithm triad of regression,
decision trees, and cluster analysis. In every
survey since 2007, over half of respondents
reported using each of these methods in the
prior year. Among these three, regression is
clearly dominant, with more than two thirds
(67%) of respondents indicating that they use
regression “often” or “most of the time”.

On average 2017 respondents use 11 different
algorithms in the course of their work (slightly
down from 12 in 2015). Despite extensive media
hype about Al, Cognitive Computing, Deep
Learning, and the rise of machine learning and
its related algorithms, no algorithms showed
substantial increased usage since the 2015
survey.



Popularity of K-means and hierarchical clustering

Even K-means was first proposed over 50 years ago, it is still one of the most widely

used algorithms for clustering for several reasons: ease of implementation, simplicity,
efficiency, empirical success. ..
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Mixture models: a probabilistic view of K-means

g

x={X1,...,%Xn} 2=1{2,...,2,}, K clusters

clustering
—

Clustering becomes a well-posed problem

K X — é —
p(x|K; 0) = Zwkp(x|K; ay) can be used for
k=1

X —

with 6 = (ﬂ'k, (Otk))




Gaussian mixture model

p(:; k) = Ny(pk, Xk) where o = (pi, Xk )
<~
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The clustering process in mixtures

Estimation of @ by 0
Estimation of the conditional probability that x; € G,

Rup(xi; )

t(0) = p(Zy = 1|X; = x;; 0) = =
Ik( ) P( ik | i i ) p(x;;e)

Estimation of z; by maximum a posteriori (MAP)

2 =1

{k=argmaxy_1 . K tih(é)}




Principle of EM

m Initialization: @°
m lteration n°q:
m Step E: estimate probabilities t7 = {ty(09)}
m Step M: maximize 891! = arg maxg £.(0; x, t9)

m Stopping rule: iteration number or criterion stability

Maximize the observe log-likelihood on 6

£(0; x) = Z In p(x;; Q)
i=1
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Motivation: huge and imbalanced data sets

» huge in the sense tall data

— number of observations (high dimension setting out of scope)

— out of computer limits

— or within computer limits but with frugal resource
consumption (green computing)

» discover new information

“— more and more clusters: not the focus of this talk

— reveal (valuable) tiny clusters: imbalanced data sets
a few abnormal objects have to be recognized among a
large amount of normal ones
credit card fraud detection [Chan and Stolfo 1998)], cancer recognition [Yu et al.
2012], fraudulent calls [Fawcett and Provost 1997]
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Approaches

» supervised approach (classification) with imbalanced data sets

— create artificial balanced data sets:
oversampling the minority class [Chawla et al. 2002],

undersampling the majority class [Tahir et al. 2009]
— labeling could be difficult when sample size is very large

» unsupervised approach (clustering) with very large sample size
— subsampling [Fraley and Raftery 2002, Xia et al. 2019]
— difficult to detect very tiny clusters

— computer science solutions
powerful computers or distributed architectures (MAP-reduce, ...)
— not frugal

our aim: clustering of huge and imbalanced datasets under
memory contraints
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Another way for data reduction

» unsupervised approach (clustering)
— from raw to binned data

5 I~
i S . ok 2, o
. o 355 ST,
257 . }-e 5 E:. count
A B . Tl 2000
> 0.0- -:-t .,". 1500
| e [T} 1000
37 . : 500
3 S [
-2.5— », .": =
R L g
7éL Iob 25 50
X X
(a) Raw data (b) Binned data
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Our bin-marginal approach in a nutshell
Frugal unsupervised D-dim. GMM using marginal binned data:
1. from raw to binned data
— particular version of the EM algorithm [McLachian and Jones 1998;

Cadez et al. 2002]
— but we will be face to another dimensionality problem. ..

2. from binned data to (1D-)marginal counts
— need to design a new EM algorithm but computationally
intractable. . .

3. optimization of a composite likelihood (CL) [Lindsay 1988; Whitaker et al.
2020) instead of the full one
< restriction for diagonal GMM

already exists: CL + GMM + 2D-bin [Ranalli and Rocci 2016]
novelty in our approach: harder data reduction (1D-bin)
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Introduction Model Estimatior

Model Based Clusterlng with finite GMM

Observations x = {x; € RP, i =1,..., n} are i.i.d. according to a
D-dimensional Gaussian mixture model (GMM) with K components:

K
X; ) = > mkd(X; p, Tk

k=1

Y ome=1, m>0 (k=1,...,K)
k

where ¢ = (71,..., 7K, [y, - BK, 21, - - -, 2k ) and ¢(.) is the
D-variate Gaussian density
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Binned data

unobservable or too many raw data x;
— vector of binned data n = (m,...,ng)

» the original sample space is divided into a partition
{BpcRI b=1,...,B}
> Ny = #{X; € By}
n arises from a multinomial model with pmf [Cadez et al. 20021

B K e
p(mi) o< T (Yome [ otxi e Ea)oix) ™
b=1 k=1 By

» trick for sample size reduction: select B < n

Talso provide an estimate of 4 with a binned version of EM
9/40



Introduction Model
0000000

atior =

Curse of dimensionality for binned data

» in our case: Cartesian grid G = G; x ... x Gp where Gy is a
univariate grid with Ry 4+ 2 cut points
— B= 1‘[3:1 (Rg + 1) bins, representing the grid’s coarseness

» works well if B <« n and univariate context

» when D increases

the number of non-empty bins
depends exponentially on the 10°- e

dimension D Bz ] ) _
<y impOSSible tO Obtain a | e e Grid coarseness per axis
manageable amount of binned
data

— several D-dimensional
numerical integrations.

, -5
- 10

20
- = 50

Non-empty bins

— vanishes any kind of gain

Space dimension
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Marginal binned data
» work with the 1-D binned data on each direction separately
» marginal counts: m={my,....,mp}
for each direction d =1,...,D, mg = (Mg, ..., Mys,),
component myp, is the count of observations xjg in the bgy-th bin
of the d-th dimension

mi M2 miz miy

ng i omyg i ngy i Ngg Moy
Moy

Moy

may

ayy [GH) a3

store 25:1 By values instead of HdD:1 By
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Bin-marginal model

» bin-marginal pdf

pm(mip) = > p(n';4),

neFm

where Fp, is the set of tables n’ sharing the same marginals m.

> issues
— identifiability
— mathematical complexity of the likelihood
— optimization of the likelihood

12/40



Discussion

Experiments
0000

Model Estimation

‘C’;XC")DC?S)CC)”U'W 000000e 00000000 0000000000000
Identifiability
» GMM identifiable up to a label permutation [vakowitz and Spragings 1968]
(raw data)

» as so far, no reference for the binned case

Proposition ( Full binned diagonal GMM - ABK 2021)

Under hypothesis of diagonal covariance matrices, binned D-variate
mixtures of at most Kz« components are identifiable if

Ry > 4Kmax — 3, d =1,...,D.
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‘C’;l(’;g‘gdo‘o” 0000008 00000000 0000000000000 0000
Identifiability
» GMM identifiable up to a label permutation [Yakowitz and Spragings 1968]

(raw data)
» as so far, no reference for the binned case

Proposition ( Full binned diagonal GMM - ABK 2021)

Under hypothesis of diagonal covariance matrices, binned D-variate
mixtures of at most Knax components are identifiable if
Fij > ‘1’<}nax - :3, C1 = 1 goo ey [).

» the proof relies on an existing result

Proposition (11.5 - Valiant 2012)

Given the linear combination of K univariate Gaussian densities
f(X) = S8, Tkd(X; ik, 02), such that either pi; # i or o2 + o for
i # j and for all k 7 # 0, the number of solutions to f(x) = 0 is at
most2(K — 1).
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Identifiability
» GMM identifiable up to a label permutation [vakowitz and Spragings 1968]
(raw data)
» as so far, no reference for the binned case

[ Proposition ( Full binned diagonal GMM - ABK 2021)

Under hypothesis of diagonal covariance matrices, binned D-variate
mixtures of at most Kz« components are identifiable if
Ry > 4Kmax —3,d=1,...,D.

Proposition (Marginal-binned diag. GMM - ABK 2021)

Bin-marginal D-variate mixtures of at most K,.x components are
identifiable if binned D-variate mixtures are identifiable.

So, under diagonal covariance matrices hypothesis, identifiability is
achieved if Ry > 4Kmax —3,d =1,...,D.
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EM algorithm for bin-marginal model

» complete log-likelihood

n

Zzlk log(mkd(Xi, b, X))
k=1 i=1

C(; x,z) =

Mx

where z gathers all zik = lypgervation i in cluster k
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EM algorithm for bin-marginal model
E-step
» expectation respectively to p(x, z|m; ")

Q) = E 0 [°(; X, Z) | m]

K B
=3 af(n) o / (%) loglmk(X; iy Ei)ldx
neFm k=1 b=1 Bp
: ) P ¢( ZU))
> a0(m) = B o and 70() = SR,

M-step

0
> 7T;(<j+ =1 n D_nefy O 0)(n) Zb 1”bf3 )(X

both steps involve intractable computation of all crossed tables F,
alternative: use of marginal composite likelihood
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Marginal Composite Likelihood

Let x be a D-dimensional sample with n observations
X;i = (Xi1,...,Xp), i =1,...,n, generated by a GMM with parameter v

» pseudo-likelihood only relying on the likelihood of the marginals

Lo(vq:%a)

— Xg = (X14g,. .., Xng) the component d of the dataset
— with parameter 4, = (m,

'~~7WK7M1d7'~~,MKU70$d7"'7U%d)
D
Ly x) = [ La(3gi xa)
d=1

» the estimator ¢ maximizing L(+; X) is consistent and
asymptotically normal [Molenberghs and Verbeke 2005]

» — EM algorithm with CL for HMM [Gao and Song 2011]
<+ CL on bivariate-binned data [Ranalii and Rocci 2016]
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Bin-marginal Composite Likelihood (bmCL)

» our proposal: combine memory reduction (bin-marginal)

log pm(m; 1) = log > p(n'; v

n’ cFm

and computational advantages of 1D-marginal CL
— we aim at maximizing the bin-marginal composite log-lik.:

Im(p;m) = La(pg; Mg)

By
Z dby |0g (/Bd fd(Xd;’l,bd)dXd).

— diagonal mixtures only...

d

>

what about identifiability again?
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Bin-marginal CL: generic identifiability

A case of non identifiability

>

blue mixture:
1 Vi
o (12 ).( 3

121 Wy
oo(( 1) 1
red mixture:

o (%) 8
0.5/\/(( o )( o

SoN©

[N

)+
y o
)+

OSO

")) +

> Eyx [Tm(" s M)] = Eqp+ [Em(1p; M)]

Identifiability except on the set of null measure composed by mixtures
having two equal proportions with two components sharing the same
projection

generic identifiability, then consistency [whitaker et al. 2020]
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A naive EM algorithm for bin-marginal CL

on each direction d: work with my

» associate the missing vectors (xq,zq), Where zg is n x K
indicator membership matrix for x4.

» run 1D EM algorithm separately
» how to conciliate the partitions from each direction ?
— use the same 74, ..., 7k on each direction, in a global EM

formalize more this idea now with a unique EM algorithm. ..
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EM algorlthm for bin- marglnal CL (meL)

With by = (1, ..., Tk, Hids - - - [Kds Togis - - Tt

» bmCL E-step

m(®, %7) Z/ lg(Yqi Xd, 2q) f(Xd,Zdlmd;w,bg))dxddzd.
XgXZqg

» bmCL M-step straightforward
0y _ TP g k)
T (1) = )
f(5vg)

a1 Yt Moy [y i (Xa) X G bo1 Maby [sg XaTiq (Xa) Ot
d . d

| ik i
Dn S8y Mo, Jug ) (xa)dxq
d

. , s (k. TF)
> estimated partition: Z = arg max )

U —
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Numerical experiment on simulated data

» ability to recognize the minority class

» comparison with two competitors (estimation with Rmixmod)
— classic estimation with the full dataset
— a subsampling strategy

» clustering quality measured by the ARI score and time, under
same memory constraints:

— bin marginal: grid coarseness R — 2R memory space
— subsampling: 100 different subsamples of size 2R

— R=50, 100, 200

25/40
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Experimental settings: 1M obs from 3D 2-classes mixtures

Experiments
00e0000000000

Scenario Separation Imbalance  Small class proportion (1) Means
HH High 1074

=(-4,-4,-4
HM High Medium 1073 = )
HL Low 1072 p2=(44,4)
MH High 1074

=(-3,-3,-3
MM Medium Medium 1073 m = )
ML Low 1072 p2=(3.3,3)
LH High 1074

=(-2,-2,-2
LM Low Medium 1073 Hl (_ 299 )
LL Low 1072 Ho=(22.2)
VH High 1074

=(-1,-1,-1
VM Very low Medium 1073 1 (_ 111 )
VL Low 1072 #e=(L11)

. —4

15?{ One separated MH(;‘?:h 18_3 py=(-1,-1,-4)
HL component iol\:vlm 10-2 o = (1,1,4)

20 replications of each scenario

Discussion
0000
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Results (partition quality)

: JEEiERE  NSSNSELN L ASiESH
quality vs memory e o i
» bmCL (black) mostly : y ' 2z
outperforms " J
subsampling (red), even - 1 :
with coarser grid, L leeen) [p3 JEiE L 2z Emim
» some difficulties only T T T
with very little separation : ’ T =
and small proportion - ! ST .
» in general, bmCL o I ia -
approaches full data set J e ni i el
results (dotted), with e e ’
drastically less amount of ¢
memory I _
A
ERRmE R I ::l: o

(j) VH (k) VM
- -
oo I - Fom i gom
; i I l . .
i .
(m) 1HH (n) 1HM (o) 1HL
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0000
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A zoom on some (partition quality) results. . .

~]HEES S TE I NNEE 4 i .

o

‘.
n
A

T ——

= ¥ 4l 20 ) o o > L) L] 20
Grd Amenzion'l S HOsITDIE d2e Grid aMmen=0nLS SUbsamEle ST Griadmensiond S"sutsampie sze

(a) HH (b) HM {(c) HL
™ s : Y o
T : t i
5&!- &:S— T ; Enm-
o : ] i o i
o =L . (L cco- i _L _L e i
= I ] A e 4 b o M 2 ® B o o B Ao
Grid dmenzion) S'subsanpie ss Grid dmerzion.5" sbsameie sz Grid dmenzslon/0.5"subsample sias
(d) MH (e) MM (f) ML
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Results (subsampling failures)

HH HM HL
30- — -+ -4
i — =
f—— =5
MH MM ML
. . 30- - -
subsampling failures %: = ==
- . . Q- =8 -
» probability of failure * if = ry g n
separation * and if 0.
imbalance ratio \, g ?g: == 55 - - = == ==
» astonishing... but £ - - 0
» if subsampling does not o
fail, it works badly e — == == == == == =5 - -
1HH 1HM 1HL
5 s =
8- —r— - -_— + E.# \ -:- b
100 200 400 100 200 400 100 200 400

Subsample size
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Results (computation time)

time vs grid/subsample size 10-
equal memory occupancy
» - subsampling EM (red)
- bin-marginal CL-EM (black)
- expected CL-EM time after
optimization in language C++ (blue)
- full dataset (dotted line)

Execution time

» remarkable improvement relatively to
full data set !

50 50 100 100 200 200
Grid dimension/0.5*subsample size
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Real imbalanced datasets

Discussion

Dataset n D Small class proportion
Cell-1 101,430 3 unknown
» image segmentation, fraud Cell-2 65,536 3 unknown
detection, hazardous Cell.3 685020 3 unknown
asteroid detection Comer T T
» three variables Asteroids 932,341 3 0.002
Credit card 284 807 3 0.0014

0000
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Results: Image segmentation Comet (R=400, K=3)
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Results: Image segmentation Cell-1 (R=20, K=4)

(a) (b)

(e) (d)
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Results: Image segmentation Cell-2 (R=20, K=4)

(a) (b)

(c) (d)
34/40
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Results: Image segmentation Cell-3 (R=20, K=4)
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Results: asteroids and credit card

asteroids credit card

o100

0000~ ‘

subsampled EM (red boxplots), bin-marginal CL-EM (black circle) and full dataset EM (blue circle)

» two known clusters

» ARl very low for all methods, included the full dataset one, but it is not the concern of this
experiment

» despite the loss of information, binned method behave similarly than full dataset and
subsampling

» subsampling has high variability (dependency to the drawn subsample)
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Sum-up

clustering of huge and imbalanced datasets under memory
contraints:

» bin marginal composite likelihood (bmCL) approach allows to
answer:

memory requirements

tractability of EM algorithm

recovery of tiny classes

not very sensitive to grid coarseness

U

» subsampling

easy to implement

pb to recover tiny clusters

high variability

number of subsamples (in clustering, no information on the
tiny cluster)?

U
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Discussion

» bmCL clearly outperforms subsampling under same memory
constraint, and is frugal compared to full sample but
— generates a lot of missing data
— prone to slow convergence, open algorithmic question
— hybrid method bmCL / subsampling?

» preliminary study, seminal for further researches

how to deal with frugality while increasing number of clusters
strategy when many (tiny) clusters

grid definition as a model choice?

specific criterion for selecting the number of clusters and
grid definition (remind: likelihood value is intractable)

el
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Thank you for your attention!
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|dentifiability (main steps)

» work with binned univariate mixtures of at most Kpax
components: pmf reduces to

V.9t eV p(myp) = p(m") VG, n = ="

» if G has R cut points, (ai,. .., ag) then it is needed to prove that
the system has only the trivial solution ¢» =" ataup to a
relabeling whatever the grid is

— * a. u

T oA = T (A
—n - a

m o o) = i ¢(—20k”k)

m I (k) = S ok

» deduce with [Prop. 11.5 - valiant 2012] that
binned univariate mixtures of at most K,.x Gaussian distributions
are identifiable if the binning grid has R > 4K2x — 3 cut points.

» induction for D-variate mixtures

41/40



EM algorithm for bin-marginal data

» complete log-likelihood

n

K
C(ix,2) = > > zik log(mkd(Xi, i, k)

k=1 i=1

where Zy = Tlghservation i in cluster k
» E-step

Qu(w, pU™") = E o n[°(9; X, Z)|m]
= > p(nm; U )E 40 [¢°(4h; X, Z) ]

neFm
= > (MR -0 [°(4: X, Z)|n]
neFm
K B
= m Yo [ A
neFm k=1 b=1

x log[mkd(X; g, Ti)]dX
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