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AC optimal power flow (ACOPF)

▶ The optimal power flow (OPF) problem consists in finding a network
operating point that optimizes a certain objective such as generation
cost, active power losses, etc.

▶ Solving the OPF problem for general alternating current (AC) networks is
difficult, in particular because of the nonconvex power flow constraints.

▶ ACOPF was first formulated in Carpentier (1962).
▶ Testing feasibility for an AC power flow system is strongly NP-hard

(Bienstock and Verma, 2015).
▶ Local optima can occur if the feasible region is disconnected and/or

because of the nonlinearities, and standard nonlinear solvers are shown
to converge to these local optima (Bukhsh et al., 2013).

▶ Lack of fast and robust solution techniques.



ACOPF: A Major and Important Challenge

▶ Computational challenge: Find a global optimal solution with running
time up to 3 to 5 orders of magnitude faster than existing solvers.

▶ Such a solution could potentially save $10G annually (Cain et al., 2012).
▶ ARPA-E Grid Optimization Competition:

https://gocompetition.energy.gov/
▶ Challenge 1: Security-constrained ACOPF (SCOPF)

– Results announced in February 2020.

▶ Challenge 2: SCOPF plus
price-responsive demand, ramp rate constrained generators and
loads, fast-start unit commitment, adjustable transformer tap ratios,
phase shifting transformers, and switchable shunts.

⇒ Reactive Optimal Power Flow

▶ Challenge 2 – Monarch of the Mountain: January to October 2022
▶ Challenge 3 – Starting

https://gocompetition.energy.gov/


Reactive Optimal Power Flow

▶ The Reactive Optimal Power Flow (ROPF) problem, or Optimal Reactive
Power Dispacth, is an ACOPF problem with discrete control devices for
regulating reactive power.

▶ ROPF usually focuses on two means of action: activation of shunts and
adjustment of transformer ratios.

▶ Because these additional requirements require the use of binary and/or
integer variables, ROPF is generally more difficult than ACOPF.



Our Contributions

1. We propose an improved clique merging algorithm for semidefinite
chordal relaxations of ACOPF.

2. We propose four semidefinite relaxations for ROPF, including a new tight
convex model for tap changers, and solve instances of ROPF with more
than 3000 buses.

3. We then consider a simpler version of ROPF and introduce some
practical aspects.

4. We propose a flexible semidefinite optimization-based B&B method that
is able to reach global optimality. To the best of our knowledge, this is
the first time that a B&B approach is tested for ROPF.

5. We show that our method closes the gap or at least improve it on most
instances, including large instances with 6000 to 10000 buses.

6. We show that the proposed methods find feasible solutions that are
better than those obtained by rounding heuristics from the literature.



ACOPF Formulation

Minimize generation cost:
∑

k∈N cGk pGk subject to
1. Power balance equations:∑

g∈Gk

pGg − pDk − g′
k |vk |2 =

∑
ℓ=(k,m)∈L

pfℓ +
∑

ℓ=(m,k)∈L
ptℓ ∀k ∈ N ,
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qGg − qDk + b′
k |vk |2 =
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3. Generator power capacities: p
Gg

≤ pGg ≤ pGg , q
Gg

≤ qGg ≤ qGg ∀g ∈ G,
4. Line thermal limits: |pfℓ + jqfℓ| ≤ sℓ, |ptℓ + jqtℓ| ≤ sℓ ∀ℓ ∈ L,
5. Voltage magnitude limits: vk ≤ |vk | ≤ vk ∀k ∈ N ,

6. Phase angle difference limits: |∠vk − ∠vm| ≤ δℓ ∀ℓ = (k ,m) ∈ L,
7. Reference bus constraint: ∠v1 = 0.



Solving ACOPF

There are (at least) three ways to tackle ACOPF:

1. Employ a nonlinear solver to find a local optimum.

2. Use a linear approximation of the power flow equations.

3. Exploit convex relaxations of nonconvex constraints.

Convex Approaches to ACOPF
▶ Various linear optimization relaxations, including the basic DC

approximation, and a specifically designed quadratic convex relaxation.
▶ Spatial B&B algorithms based on convex relaxations, such as: QO

(Godard et al., 2019), SOCO (Kocuk et al., 2017), SDO (Gopalakrishnan
et al., 2012).

▶ Lasserre hierarchy of relaxations (Josz et al., 2015).
▶ Dozens of papers on semidefinite and related approaches to ACOPF,

see the recent survey
▶ Zohrizadeh, Josz, Jin, Madani, Lavaei, Sojoudi (2020). A survey on conic

relaxations of optimal power flow problem. EJOR 287(2), 391-409.



Matrix Formulation of ACOPF

▶ ACOPF can be cast as a nonconvex polynomial optimization problem in
complex variables.

▶ The nonlinearities in the ACOPF formulation only involve the voltage
variables vk .

▶ Use the vector of voltages v to define the matrix variable V in complex
numbers:

V = vvH ⇒

{
Vkk = |vk |2 , k ∈ N ,

Vkm = vk v∗
m, (k ,m) ∈ L.

▶ We can now use the individual entries of the variable V to linearize the
quadratic terms in the ACOPF.

▶ We have developed a Julia module allowing the representation of
polynomial problems in complex formulation (Sliwak et al., 2019):
https://ieeexplore.ieee.org/abstract/document/8810960

https://ieeexplore.ieee.org/abstract/document/8810960


Matrix Formulation of ACOPF (ctd)

▶ Power balance equations:∑
g∈Gk

pGg − pDk − g′
k Vkk =

∑
ℓ=(k,m)∈L

pfℓ +
∑

ℓ=(m,k)∈L

ptℓ ∀k ∈ N ,

∑
g∈Gk

qGg − qDk + b′
k Vkk =

∑
ℓ=(k,m)∈L

qfℓ +
∑

ℓ=(m,k)∈L

qtℓ ∀k ∈ N ,

▶ Line flow equations:
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▶ Voltage magnitude limits: v k
2 ≤ Vkk ≤ v k

2 ∀k ∈ N ,

▶ Phase angle diff. limits: | Im(Vkm)| ≤ Re(Vkm) tan δℓ ∀ℓ = (k ,m) ∈ L,
▶ Matrix variable definition: V = vvH



Basic Semidefinite Relaxation of ACOPF

From the matrix formulation, we obtain the basic semidefinite relaxation
(SDR) of ACOPF by relaxing the matrix constraint (Bai et al., 2008):

V = vvH ⇔ V ⪰ 0 and rankV = 1

⇒ V ⪰ 0.

▶ If the optimal solution of the SDR relaxation is a rank-one matrix, we
have zero optimality gap and we can recover the globally optimal voltage
profile.

▶ Lavaei and Low (2012) observed (in a different way) that the global
optimal solution could be recovered using the SDR for several standard
IEEE benchmarks.

▶ Lesieutre et al. (2011) showed that this failed for some practical cases
but confirmed that the semidefinite approach was promising for
identifying large numbers of solutions to the power flow equations.

▶ Main limitation of SDR: Computationally very expensive for large-scale
networks.



Chordal Relaxations

▶ A matrix completion approach to exploit sparsity in semidefinite
optimization was proposed by Fukuda et al. (2001).

Idea: Replace the PSD constraint on the large matrix V by PSD constraints on
r smaller matrices:

V ⪰ 0 ⇔ Xi ⪰ 0, i = 1..r with ni ≪ n

plus constraints linking the entries common to two or more matrices Xi .
▶ Equivalence holds if and only if the graph representing the sparsity

pattern of V is chordal.
▶ This motivates the idea of chordal relaxations for ACOPF, first proposed

by Jabr (2012).
▶ Molzahn et al. (2013) first proposed clique merging for ACOPF.
▶ An improved clique merging for ACOPF was proposed by Sliwak et al.

(2021) using a different criterion to estimate the computational cost.



Reactive Optimal Power Flow

Because of the presence of discrete variables, Reactive Optimal Power Flow
(ROPF) is generally more difficult than the ACOPF.

We present here the following recent developments:
▶ Bingane et al. (2019) proposed 4 different semidefinite relaxations for

ROPF, as well as a new tight convex model for tap changers.
▶ Sliwak et al. (2021) developed a full B&B approach for the problem with

shunts, and with additional practical considerations.



ROPF Formulation

The formulation is the same as for ACOPF with the addition of binary
variables for power balance at the buses k ∈ U where shunts are present:∑

g∈Gk

pGg − pDk − g′
k uk |vk |2 =

∑
ℓ=(k,m)∈L

pfℓ +
∑

ℓ=(m,k)∈L

ptℓ

∑
g∈Gk

qGg − qDk + b′
k uk |vk |2 =

∑
ℓ=(k,m)∈L

qfℓ +
∑

ℓ=(m,k)∈L

qtℓ

with shunt variables uk ∈ {0, 1} ∀k ∈ U , and changing the parameters tℓ to
variables on the line flow equations for the lines ℓ = (k ,m) ∈ T where tap
changers are present:
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with tap ratios tℓ ∈ {tℓ, . . . , tℓ} ∀ℓ ∈ T .



Semidefinite Relaxation 1 (SDR1)

Let

V := vvH ,

wℓ :=
vk

tℓ
∀ℓ = (k ,m) ∈ T .

W{ℓ} :=

Vkk Wkℓ Vkm

W∗
kℓ Wℓℓ Wℓm

V∗
km W∗

ℓm Vmm

 :=

vk

wℓ

vm

vk

wℓ

vm

H

∀ℓ = (k ,m) ∈ T ,

ξk := uk Vkk ∈ {0,Vkk} ∀k ∈ U .

The semidefinite relaxation 1 (SDR1) is obtained by
▶ linearizing the power balances and branch flows using these new

variables,
▶ relaxing V and W{ℓ} to positive semidefinite (instead of rank-one), and
▶ adding appropriate bounds on the new variables.



Tight-and-Cheap Relaxation 1 (TCR1)

TCR1 is obtained by replacing V ⪰ 0 and W{ℓ} ⪰ 0 for all ℓ ∈ T in SDR1 by 1 v∗
k v∗

m

vk Vkk Vkm

vm V∗
km Vmm

 ⪰ 0 ∀ℓ = (k ,m) ∈ L \ T ,

[
1 wH

{ℓ}
w{ℓ} W{ℓ}

]
⪰ 0 ∀ℓ = (k ,m) ∈ T ,

where wH
{ℓ} = (v∗

k ,w∗
ℓ , v∗

m) for all ℓ = (k ,m) ∈ T , and by adding the RLT
constraints

Re(v1) ≥
V11 + v1v1

v1 + v1
,

Im(v1) = 0,

corresponding to the reference bus k = 1.



Semidefinite Relaxation 2 (SDR2)

For all ℓ = (k ,m) ∈ T , the variable definitions

Wkℓ =
Vkk

tℓ
and Wℓℓ =

Vkk

t2
ℓ

∀ℓ = (k ,m) ∈ T ,

are of the form zn = x/yn, n = 1, 2. Consider the set

S1 = {(x , y , z1, z2) ∈ R4 : x ≤ x ≤ x , y ≤ y ≤ y , z1 = x/y , z2 = x/y2},

where 0 < x < x and 0 < y < y . We can show that S1 is equivalent to

S2 = {(x , z1, z2) ∈ R3 : z2 = z2
1/x , (x , z1) ∈ Ω},

where Ω = {(x , z1) ∈ R2 : x ≤ x ≤ x , x/y ≤ z1 ≤ x/y} is the convex
quadrilateral with vertices (x , x/y), (x , x/y), (x , x/y), and (x , x/y).

Bingane et al. (2019) propose a tighter convex set containing S2.



Convex Hull Representation

Proposition
The convex hull of

S2 = {(x , z1, z2) ∈ R3 : x ≤ x ≤ x , x/y ≤ z1 ≤ x/y , z2 = z2
1/x},

where 0 < x < x, is

S2 = {(x , z1, z2) ∈ R3 : x ≤ x ≤ x , z2
1 ≤ xz2, x + yyz2 ≤ (y + y)z1}.



Using the Convex Hull Representation

Applying the Proposition to

Wkℓ =
Vkk

tℓ
and Wℓℓ =

Vkk

t2
ℓ

∀ℓ = (k ,m) ∈ T ,

we replace

Wkℓ ≥
Vkk

tℓ
and Wℓℓ ≤

Vkk

t2
ℓ

∀ℓ = (k ,m) ∈ T

by
Vkk + tℓtℓWℓℓ ≤ (tℓ + tℓ)Wkℓ ∀ℓ = (k ,m) ∈ T ,

and correspondingly define new relaxations SDR2 and TCR2.

From the Proposition, it follows that SDR2 (respectively TCR2) is stronger
than SDR1 (TCR1).



Proposed Approach to the ROPF

1. Solve SDR1, TCR1, SDR2 or TCR2 and find corresponding shunt
solutions û ∈ [0, 1]|U| and tap ratios t̂ ∈

∏
ℓ∈T [tℓ, tℓ] with the roundoff

formulas:

ûk =
ξk

Vkk
∈ [0, 1],

t̂ℓ =
√

Vkk

Wℓℓ
∈ [tℓ, tℓ].

2. Round-off u and t to their respective nearest discrete values
ũ ∈ {0, 1}|U| and t̃ ∈

∏
ℓ∈T {tℓ, . . . , tℓ},

3. Fix u = ũ and t = t̃ and solve the resulting ACOPF problem with a
nonlinear (local) solver.



Summary of Computational Results

▶ Final solutions obtained from SDR1’s and TCR2’s optimal solutions
have, on average, the same optimality gaps.

▶ Final solutions obtained from TCR1’s optimal solutions have slightly
larger optimality gaps.

▶ Solving SDR1 (respectively TCR1) is as expensive as solving SDR2
(respectively TCR2) in general.

▶ Solving SDR1 (respectively SDR2) is much more expensive than solving
TCR1 (respectively TCR2) for large-scale instances. The TCRs are
generally one order of magnitude faster than the SDRs.

Overall,
TCR2 offers the best combination of optimality gap and computation time.



Three Practical Constraints for ROPF

Limiting the number of shunts that can be switched on:∑
n∈S

un ≤ k . (MAXkshunts)

Limiting the number of switches compared to the given initial states:∑
n∈S:u0

n=0

un +
∑

n∈S:u0
n=1

(1 − un) ≤ k . (MAXkmoves)

Simulating primary frequency control:

Re(Sn) =
[
Pmin

n + 2(P0
n − Pmin

n )λ−] δ−
+
[
2P0

n − Pmax
n + 2(Pmax

n − P0
n )λ

+
]
δ+, ∀n ∈ G

0 ≤ λ− ≤ 0.5
0.5 ≤ λ+ ≤ 1
λ−, λ+ ∈ R
δ+ + δ− = 1
δ+, δ− ∈ {0, 1}.

(GENmoves)
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Simulating Primary Frequency Control

Let us look more closely at the constraints (GENmoves):

Re(Sn) =
[
Pmin

n + 2(P0
n − Pmin

n )λ−] δ− +
[
2P0

n − Pmax
n + 2(Pmax

n − P0
n )λ

+
]
δ+, ∀n

0 ≤ λ− ≤ 0.5, 0.5 ≤ λ+ ≤ 1, λ−, λ+ ∈ R
δ+ + δ− = 1, δ+, δ− ∈ {0, 1}.

▶ (GENmoves) simulate primary frequency control by allowing active
generation to increase (δ+ = 1) or decrease (δ− = 1) uniformly with
respect to a given plan P0.

▶ This models the fact that the generators should all move in the same
direction to compensate for a lack or excess of generation.

▶ In addition, they must all contribute in a uniform manner according to
their power bounds. This is achieved using the variables λ+ and λ− that
make all the generators reach their upper/lower bound at the same time.

▶ Consequently, (GENmoves) make the constraints
Pmin

n ≤ Re(Sgen
n ) ≤ Pmax

n redundant.



Semidefinite relaxation

▶ Continuous part: Use of Hermitian matrix V = vvH and rank relaxation

▶ Combinatorial part: Introduction of variables ξi = uiVii and McCormick
envelopes to relax quadratic constraints:

ui ∈ [0, 1]
Vii ∈ [(vmin

i )2, (vmax
i )2]

McCormick inequalities:

ξi ≤ Vii + (vmin
i )2(ui − 1)

ξi ≤ (vmax
i )2ui

ξi ≥ (vmax
i )2(ui − 1) + Vii

ξi ≥ (vmin
i )2ui



Branch-and-Bound Algorithm (B&B)

▶ Semidefinite relaxation solved at each node with MOSEK
▶ Clique decomposition algorithm of Sliwak et al. (2021) to speed up the

solution of the relaxations
▶ Feasible solution computed at nodes with Knitro (MPEC option) after

solving the semidefinite relaxation to get a good starting point
▶ Branching on binary variables only (i.e., no spatial B&B) ⇒

method not guaranteed to achieve global optimality: even if all binary
variables are fixed, there may still be a gap between the upper and lower
bounds (if the semidefinite relaxation is not exact or if the feasible
solution is not a global optimum).

▶ Exploration strategy: depth-first search
▶ Branching strategy: variable closest to 1
▶ Time limit of 3600 sec and fixing of some binary variables from solution

of initial relaxation:
▶ (MAXkshunts): fixing at 0 of binaries ≤ 0.25
▶ (MAXkmoves): fixing at 1 of binaries ≥ 0.75
▶ (GENmoves): fixing at 1 of binaries ≥ 0.9 and at 0 of binaries ≤ 10−4



Computational Results for (MAXkshunts)
If infeasible for k = 4 then k increased until feasibility is achieved

Instance |S| k Root B&B Rounding
Gap #free b’s #nodes Time (s) Gap Gap

300 29 4 5.61% 7 13 32.51 0.00% 0.01%
300mod 29 4 0.21% 7 13 23.28 0.00% 5.48%
ACTIVSg500 15 4 0.52% 5 47 102.17 0.52% 0.53%
1354pegase 1082 4 - 5 1 18.80 0.00% 0.01%
1888rte 45 4 - 11 181 >3600 0.44% 0.61%
1951rte 24 4 0.11% 6 5 70.41 0.00% 0.11%
ACTIVSg2000 149 4 0.10% 7 23 >3600 0.10% -
2736sp 1 4 0.00% 0.00%
2737sop 5 4 0.03% 5 5 244.95 0.00% 0.00%
2746wop 6 4 0.00% 0.00%
2848rte 48 4 0.04% 7 106 >3600 0.04% -
2868rte 33 4 0.00% -
2869pegase 2197 12 - 14 13 434.81 0.00% 0.02%
3012wp 9 4 0.01% 5 5 457.80 0.00% 0.00%
3120sp 9 4 0.08% 7 38 >3600 0.08% -
3375wp 9 4 0.00% 0.00%
6468rte 97 4 0.08% 8 23 >3600 0.08% -
6470rte 73 4 - 6 23 >3600 - -
6495rte 99 14 0.40% 17 26 >3600 0.40% -
6515rte 102 66 0.29% 74 26 >3600 0.29% -
9241pegase 7327 125 1.44% 165 18 >3600 1.44% -
13659pegase 8754 1100 1.28% 1237 28 >3600 1.28% 1.28%



Computational Results for (MAXkmoves)

k = 4 and shunts set by rounding the solution of basic relaxation of ROPF
Instance |S| Root B&B Rounding

Gap #free b’s #nodes Time (s) Gap Gap
300 29 0.00% 0.00%
300mod 29 0.00% 0.00%
ACTIVSg500 15 0.72% 0 1 17.38 0.61% 0.61%
1354pegase 1082 0.00% 0.00%
1888rte 45 0.38% 10 336 >3600 0.36% 0.39%
1951rte 24 0.01% 5 7 70.36 0.00% 0.01%
ACTIVSg2000 149 0.04% 54 17 1512.15 0.03% 0.03%
2736sp 1 0.00% 0.00%
2737sop 5 0.03% 1 1 57.35 0.00% 0.00%
2746wop 6 0.00% 0.00%
2848rte 48 0.03% 27 62 >3600 0.03% -
2868rte 33 0.00% -
2869pegase 2197 0.00% 0.00%
3012wp 9 0.00% -
3120sp 9 - 2 5 829.46 0.09% -
3375wp 9 0.00% -
6468rte 97 - 41 20 >3600 0.03% -
6470rte 73 - 26 14 3417.24 0.00% -
6495rte 99 - 42 15 >3600 0.39% -
6515rte 102 0.30% 30 18 >3600 0.30% -
9241pegase 7327 1.46% 1549 12 >3600 1.46% -
13659pegase 8754 - 2283 10 >3600 1.27% -



Computational results - Constraint (GENmoves)


Re(Sn) =

[
Pmin

n + 2(P0
n − Pmin

n )λ−] δ−
+
[
2P0

n − Pmax
n + 2(Pmax

n − P0
n )λ

+
]
δ+, ∀n ∈ G

δ+ + δ− = 1, δ+, δ− ∈ {0, 1}
λ− ∈ [0, 0.5], λ+ ∈ [0.5, 1].

(GENmoves)

▶ Omission of the thermal limits for these tests.
▶ Random generation of active generation plans P0 such that total

generation ≥ 1.02 × total load (to allow for losses)
▶ Solution in two steps: δ+ = 1 and δ− = 1

Summary of results for 15 instances (with > 1000 buses) and 5 scenarios per
instance, 75 cases in total:
▶ Rounding solved 31 cases to < 0.05% gap.
▶ Root/B&B solved 46 cases to < 0.05% gap.
▶ Root/B&B more robust than rounding: 30 cases without solution with

rounding method (zero for root/B&B)



Summary and Research Challenges



Summary and Research Challenges

▶ Semidefinite optimization can find global optimal solutions for realistic
ACOPF and ROPF instances with up to thousands of nodes.

▶ The computational times are still high for many practical applications.

Research Challenges
1. Gain a better understanding of chordal extensions and exploiting

structure in SDRs of ACOPF.

2. Improved use of polynomial optimization and the Lasserre hierarchy.

3. Mixed-Integer Semidefinite Optimization, particularly for ROPF.

4. Uncertainty in power injections due to renewable generation and/or to
deferrable load and storage devices.

5. Look at the practical aspects raised in the ARPA-E Competition!

You are welcome to contact me or to visit the website:

miguel.f.anjos AT ed.ac.uk https://miguelanjos.com
Thank you for your attention.

https://miguelanjos.com
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miguel.f.anjos AT ed.ac.uk https://miguelanjos.com
Thank you for your attention.

https://miguelanjos.com
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