Learning with limited supervision (or leveraging unlabeled data)

Ismail Ben Ayed SystemX

June 2022

1

Few-shot learning

Few-shot tasks at testing time

Few-shot learning

- -- Humans recognize easily with few examples
- -- Modern ML generalize very poorly

Why it is interesting:

Available data sets represent small sub-domains of the world

Cityscapes (5k images; 1.5h per image): Urban scenes, less than 30 classes

A dense prediction task: semantic segmentation

New classes, but with few examples

Building labels for dense prediction tasks is even worse (e.g., semantic segmentation)

...and it gets more complex in medical imaging

Labels: Not only expensive, but might need expert knowledge

In medical image segmentation: we are not anywhere close to the 5k of Cityscapes

Crowdsourcing?

Select all images with esophagus Click verify once there are none left.

Dense 3D annotations: several hours (of radiologist time)

Semi-supervised learning (SSL) A lot of non-annotated data, and a fraction of points annotated

Full annotations

Semi-supervised

Figures from Lin et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation, CVPR 2016

Domain shifts make things worse

(even for the same task and with full annotations in one domain)

[MRI Prostate segmentation: Figure from Zhu et al., Boundary-weighted Domain Adaptive Neural Network for Prostate MR Image Segmentation ArXiv 2019]

Domain shifts: within and across modalities

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac segmentation ArXiv 2018]

Unsupervised domain adaptation (UDA)

Bad generalization to the target

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a benchmark at cross-modality cardiac segmentation ArXiv 2018]

A lot of interest in computer vision as well: Domain shifts are *everywhere* BUT we cannot label *everything*

Figures from [Zhang et al., A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes TPAMI 2019]

A lot of interest in computer vision as well: Domain shifts are *everywhere* BUT we cannot label *everything*

Cityscapes (5000 images): labeling of 1 image takes 90 min at average [Cordt et al., CVPR 2016]

UDA = SSL + domain shift

Test Time Adaption (TTA) or Source-Free Domain Adaptation (SFDA) UDA *without* access to the source data

No access to the source data

Adaption

VS.

Shared resources

Training from scratch

private resources

• Efficient **re-use** of large models

• Started in NLP

BERT (2018): **340M** parameters, trained on then English Wikipedia 2,5 B word
 GPT-3 (2020): **175B** parameters, trained on hundreds of billions of words

- Gradually coming to computer vision
- CLIP (2021): **151M** parameters, trained on 400 M (text, image) pairs
- DALL-E 2 (2022): **12B** parameters

An example of the benefits of large models: CLIP

[Radford et al., ICML 2021]

Desirable properties of a test-time adapter

Model-agnostic

□ so that the progress in architectures could be leveraged easily

Robust to hyper-parameters

□ Ideally the same across different adaptation scenarios and tasks

• Lightweight

Few-Shot/SSL/UDA/TTA in a nutshell: Leveraging **unlabelled** data with **priors**

- Structure-driven priors: Regularization
- Knowledge-driven priors (e.g., anatomical constraints)
- Invariance priors (e.g., contrastive learning)
- Multi-modal priors (e.g., text info associated with the images)

Laplacian regularization

Laplacian regularization: Standard in classical SSL

$$\sum_{p \in \mathcal{L}} l(\mathbf{f}_{\theta}^{p}, \mathbf{y}^{p}) + \sum_{p,q \in \mathcal{L} \cup \mathcal{U}} g(\mathbf{f}_{\theta}^{p}, \mathbf{f}_{\theta}^{q}, w_{p,q})$$

$$w_{p,q} \|\mathbf{f}_{\theta}^{p} - \mathbf{f}_{\theta}^{q}\|^{2}$$

- [Weston et al., Deep Learning via semi-supervised embedding, ICML 2008]
- [Belkin et al., Manifold regularization: a geometric framework for learning from Labeled and Unlabeled Examples, JMLR 2006]
- [Zhu et al., Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, ICML 2003]

$$\min_{\theta} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) + \sum_{p, q \in \mathcal{L} \cup \mathcal{U}} w_{p,q} \left\| \mathbf{s}^p_{\theta} - \mathbf{s}^q_{\theta} \right\|^2$$

[Tang et al., On regularized losses for weakly supervised segmentation, ECCV 2018]

$$\min_{\theta} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) + \sum_{p, q \in \mathcal{L} \cup \mathcal{U}} w_{p, q} \|\mathbf{s}^p_{\theta} - \mathbf{s}^q_{\theta}\|^2$$

On the vertices of the simplex (binary variables), this is exactly the popular Potts model in CRFs

[Tang et al., On regularized losses for weakly supervised segmentation, ECCV 2018]

$$\min_{\theta} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) + \sum_{p, q \in \mathcal{L} \cup \mathcal{U}} w_{p,q} \|\mathbf{s}^p_{\theta} - \mathbf{s}^q_{\theta}\|^2$$

[Tang et al., On regularized losses for weakly supervised segmentation, ECCV 2018] [Marin et al., Beyond gradient descent for regularized segmentation losses, CVPR 2019]

$$\min_{\theta} \sum_{p \in \mathcal{L}} l(\mathbf{y}^p, \mathbf{s}^p_{\theta}) + \sum_{p, q \in \mathcal{L} \cup \mathcal{U}} w_{p,q} \|\mathbf{s}^p_{\theta} - \mathbf{s}^q_{\theta}\|^2$$

97.6% of full supervision performance with 3% of the labels!

[Tang et al., On regularized losses for weakly supervised segmentation, ECCV 2018] [Marin et al., Beyond gradient descent for regularized segmentation losses, CVPR 2019]

Laplacian Regularized Few-Shot Learning [Ziko et al., ICML 2020]

Few-shot learning

A very large body of recent works, mostly based on:

Meta-learning

Meta-Learning or "learning-to-learn"

Base training with enough labeled data

(base classes *different from the* test classes)

Meta-Learning or "learning-to-learn"

Meta-Learning or "learning-to-learn"

Taking a few steps backwards

Simple baselines and good regularization outperform convoluted meta-learning approaches

[Chen et al., ICLR'19]; [Tian et al., ECCV'20]; [Veilleux et al., NeurIPS'21]; [Dhillon et al., ICLR'20]; [Ziko et al., ICML'20]; [Boudiaf et al., NeurIPS'20]

Taking a few steps backwards

Simple baselines and good regularization outperform convoluted meta-learning approaches

Baseline Framework

No need to *meta-train*

Baseline Framework

Conventional training

Types of test-time prediction:

Induction vs. Transduction

Transductive vs. inductive test-time prediction

Transduction (joint test-time prediction)

Transductive vs. inductive test-time prediction

Transduction (joint test-time prediction)

Transduction is popular in few-shot learning, e.g.,

[Finn et al., ICML'17] (MAML: Trans. batchnorm)

[Dhillon et al., ICLR'20] (Entropy Min)

[Ziko et al., ICML'20] (Laplacian Regularization)

[Boudiaf et al., NeurIPS'20] (Information Maximization)

Why transduction is a relevant and promising avenue for adaptation?

- Tons of practical scenarios that allow transduction
- image segmentation, videos streams, smart-device photos, autonomous vehicles, medical imaging, demographic or financial records, etc.

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021

Why transduction is a relevant and promising avenue for adaptation?

• Transduction benefits from the statistics of unlabeled test data

- Widely used in classical machine learning: [Vapnik 99]
- □ e.g., graph regularization & label propagation techniques

[Ziko et al., ICML'20]

Unknown label assignments for query points (equal to 1 if sample *p* belongs to class *c* and 0 otherwise)

[Ziko et al., ICML'20]

$$E(\mathbf{Z}) = G(\mathbf{Z}) + \frac{\lambda}{2} L(\mathbf{Z})$$

Feature embedding
(fixed, no re-training)
$$G(\mathbf{Z}) = \sum_{p \in \mathcal{U}} \sum_{c=1}^{C} z_{p,c} ||\mathbf{f}_{\theta}^{p} - \mu_{c}||^{2}$$

1

[Ziko et al., ICML'20]

$$E(\mathbf{Z}) = \mathbf{G}(\mathbf{Z}) + \frac{\lambda}{2}L(\mathbf{Z})$$

mean of the support samples in class c
$$G(\mathbf{Z}) = \sum_{p \in \mathcal{U}} \sum_{c=1}^{C} z_{p,c} ||\mathbf{f}_{\theta}^{p} - \boldsymbol{\mu}_{c}||^{2}$$

[Ziko et al., ICML'20]

$$E(\mathbf{Z}) = G(\mathbf{Z}) + \frac{\lambda}{2}L(\mathbf{Z})$$
Minimizing this term is trivial (assign a sample to the nearest mean)
$$G(\mathbf{Z}) = \sum_{p \in \mathcal{U}} \sum_{c=1}^{C} z_{p,c} ||\mathbf{f}_{\theta}^{p} - \mu_{c}||^{2}$$

[Ziko et al., ICML'20]

Optimization: Concave-Convex procedure

Yuille & Rangarajan, The concave-convex procedure (CCCP), NIPS 2001

The results question an abundant meta-learning literature

Methods	Network	1-shot	5-shot
MAML [Finn et al., 2017]	ResNet-18	49.61 ± 0.92	65.72 ± 0.77
Chen [Chen et al., 2019]	$\operatorname{ResNet-18}$	51.87 ± 0.77	75.68 ± 0.63
RelationNet [Sung et al., 2018]	$\operatorname{ResNet-18}$	52.48 ± 0.86	69.83 ± 0.68
MatchingNet [Vinyals et al., 2016]	$\operatorname{ResNet-18}$	52.91 ± 0.88	68.88 ± 0.69
ProtoNet [Snell et al., 2017]	$\operatorname{ResNet-18}$	54.16 ± 0.82	73.68 ± 0.65
Gidaris [Gidaris and Komodakis, 2018]	ResNet-15	55.45 ± 0.89	70.13 ± 0.68
SNAIL[Mishra et al., 2018]	ResNet-15	55.71 ± 0.99	68.88 ± 0.92
AdaCNN [Munkhdalai et al., 2018]	ResNet-15	56.88 ± 0.62	71.94 ± 0.57
TADAM [Oreshkin et al., 2018]	ResNet-15	58.50 ± 0.30	76.70 ± 0.30
CAML [Jiang et al., 2019]	ResNet-12	59.23 ± 0.99	72.35 ± 0.71
TPN [Yanbin et al., 2019]	ResNet-12	59.46	75.64
TEAM [Qiao et al., 2019]	$\operatorname{ResNet-18}$	60.07	75.90
MTL [Sun et al., 2019]	$\operatorname{ResNet-18}$	61.20 ± 1.80	75.50 ± 0.80
VariationalFSL [Zhang et al., 2019]	ResNet-18	61.23 ± 0.26	77.69 ± 0.17
Transductive tuning [Dhillon et al., 2020]	$\operatorname{ResNet-12}$	62.35 ± 0.66	74.53 ± 0.54
MetaoptNet[Lee et al., 2019]	$\operatorname{ResNet-18}$	62.64 ± 0.61	78.63 ± 0.46
SimpleShot [Wang et al., 2019]	$\operatorname{ResNet-18}$	63.10 ± 0.20	79.92 ± 0.14
CAN+T [Hou et al., 2019]	$\operatorname{ResNet-12}$	67.19 ± 0.55	80.64 ± 0.35
LaplacianShot (ours)	$\operatorname{ResNet-18}$	72.11 ± 0.19	82.31 ± 0.14

Several recent baselines made similar observations:

[Chen et al., ICLR'19]; [Tian et al., ECCV'20]; [Dhillon et al., ICLR'20]; [Boudiaf et al., NeurIPS'20]

More realistic benchmark: Further surprises

[Veilleux et al., NeurIPS'21]

More realistic few-shot tasks (Dirichlet-sampled)

More realistic benchmark: Further surprises

[Veilleux et al., NeurIPS'21]

More realistic few-shot tasks (Dirichlet-sampled)

Parameter-free online test-time adaptation [Boudiaf et al., CVPR'22]

Test-time adaptation re-visited

State-of-the-art TTA methods, e.g., TENT: [Wang et al., ICLR'21]

Needs different hyper-parameters for each target scenario

Evaluation in [Boudiaf et al., CVPR'22]

Regularizing the network outputs behave better: Laplacian in action, again! C $\min_{\mathbf{Z}} \left\{ -\sum_{p \in \mathcal{U}} \sum_{c=1}^{r} z_{p,c} \log s_{\theta}^{p,c} + \sum_{p,q \in \mathcal{U}^2} w_{p,q} \|\mathbf{z}_p - \mathbf{z}_q\|^2 \right\}$ LAME (Laplacian-Adjusted Maximum Likelihood Estimate) -0.1 2.1 1.5 7 -0.1 5.9 0.7 5.5 10.0 1.7 16 -0.2 2 1.9 7.3 -1.2 17 0.6 17 16 -0.2 2 1.9 7.3 -1.2 17 0.6 17 7.5 1.7 16 -0.2 2 1.9 7.3 -1.2 17 0.6 17 -5.0 0.7 5.8 -0.1 2.1 1.5 7 -0.1 5.9 0.7 5.5 2.5 0.7 5.8 -0.1 2.1 1.5 7 -0.1 5.9 0.7 5.5 0.0 1.7 16 -0.2 2 1.9 7.3 -1.2 17 0.6 17 -2.51.7 16 -0.2 2 1.9 7.3 -1.2 17 0.6 17 5.8 -0.1 2.1 1.5 7 -0.1 5.9 0.7 5.5 0.7 -5.01.7 16 -0.2 2 1.9 7.3 -1.2 17 0.6 17 -7.5 9.6 0.9 9.3 -0.1 2.1 1.6 7 -0.2 10 0.9 9.9 -10.0 1.7 16 -0.2 2 1.9 7.3 -1.2 17

Correcting **only** the network probability outputs

[Boudiaf et al., CVPR'22]

C

ImageNet-C16

C D A B C D A B

ImageNet-Val ImageNet-C

Transferability of hyperparameters across models

[Boudiaf et al., CVPR'22]

Constrained deep networks

Constrained optimization (in deep networks)

Data meet domain knowledge

Full annotations

Partial annotations for cross-entropy

[Kervadek et al., MedIA'19]

Size information

[Kervadek et al., MedIA'19]

[Kervadek et al., MedIA'19]

[Kervadek et al., MedIA'19]

The exciting part: 90% of full supervision Dice with 0.1% of labels

[Kervadek et al., MedIA'19]

The surprising part: Lagrangian optimization is much worse than a simple penalty

Beyond size: Exploring shape priors as functions of network outputs

[Kervadek et al., MIDL'21]

(a) A visual comparison of the different supervision methods on the ACDC dataset.

Pixel	Label	Shape descriptor		Class	
0	RV	(in pixels)	RV	Муо	LV
1	BACKGROUND	Object volume \mathfrak{V}	3100	800	1600
2		Centroid location \mathfrak{C}	(125,80)	(125,	125)
	:	Avg. dist. to centroid \mathfrak{D}	(20, 15)	(15, 20)	(10, 10)
65536	Background	$\textbf{Object length } \mathfrak{L}$	750	1000	500
(b) Pixel-wise labels (c) Shape descriptors (65k discrete values) (16 continuous values)					

Beyond size: Exploring shape priors as functions of network outputs

[Kervadek et al., MIDL'21]

(a) A visual comparison of the different supervision methods on the ACDC dataset.

Pixel	Label	Shape descriptor		Class	
0	RV	(in pixels)	RV	Муо	LV
1	BACKGROUND	Object volume \mathfrak{V}	3100	800	1600
2	LV	Centroid location \mathfrak{C}	(125, 80)	(125,	125)
	÷	Avg. dist. to centroid \mathfrak{D}	(20, 15)	(15, 20)	(10, 10)
65536	BACKGROUND	Object length \mathfrak{L}	750	1000	500
(b) Pixel-wise labels (65k discrete values)		(c) Shape (16 continu	descriptors 10us values)		

Spatial coordinates

A few shape descriptors are surprisingly powerful in Test-Time Adaptation for Segmentation

Ground truth No adapt Shape-constrained

[Bateson et al., MICCAI 2022]

References & acknowledgments of co-authors (1)

I. M. Ziko, J. Dolz, E. Granger and I. Ben Ayed, Laplacian regularized few-shot learning, ICML 2020 https://github.com/imtiazziko/LaplacianShot

M. Boudiaf, R. Mueller, I. Ben Ayed and L. Bertinetto, Parameter-free online test time adaptation, CVPR 2022

https://github.com/fiveai/lame

M. Tang, F. Perazzi, A. Djelouah, I. Ben Ayed, C. Schroers, Y. Boykov, On regularized losses for weakly supervised CNN segmentation, **ECCV 2018** <u>https://github.com/meng-tang/rloss</u>

O. Veilleux, M. Boudiaf, P. Piantanida and I. Ben Ayed, Realistic Evaluation of Transductive Few-Shot Learning, **NeurIPS 2021** <u>https://github.com/oveilleux/realistic_transductive_few_shot</u>

M. Bateson, H. Lombaert, I. Ben Ayed, Test-time adaptation with shape moments for image segmentation, **MICCAI 2022** <u>https://github.com/mathilde-b/TTA</u>

References & acknowledgments of co-authors (2)

H. Kervadec, J. Dolz, M. Tang, E. Granger, Y. Boykov, I. Ben Ayed, Constrained-CNN losses for weakly supervised segmentation, MedIA 2019 https://github.com/LIVIAETS/SizeLoss_WSS

H. Kervadec, H. Bahig, L. Letourneau-Guillon, J. Dolz, I. Ben Ayed, Pixel-wise supervision for segmentation: A few global shape descriptors might be surprisingly good!, **MIDL 2021** <u>https://github.com/hkervadec/shape_descriptors</u>

M. Boudiaf, I. M. Ziko, J. Rony, J. Dolz, P. Piantanida, I. Ben Ayed, Transductive information maximization for few-shot learning, NeurIPS 2020 https://github.com/mboudiaf/TIM

M. Boudiaf, H. Kervadec, I. M. Ziko, P. Piantanida, I. Ben Ayed, J. Dolz, Few-shot segmentation without meta-learning: A good transductive inference is all you need? **CVPR 2021** <u>https://github.com/mboudiaf/RePRI-for-Few-Shot-Segmentation</u>

Thank you...