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Few-shot learning

Training on base classes  

Learn from a few examples per new class  

Few-shot tasks at testing time  

Classify 
these  
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-- Humans recognize easily with few examples

-- Modern ML generalize very poorly

 2   4

Few-shot learning
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Cityscapes (5k images; 1.5h per image):
Urban scenes, less than 30 classes 

Why it is interesting:  
Available data sets represent small sub-domains of the world 

 New classes, but with few examples 

A dense prediction task: semantic segmentation  
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 Building labels for dense prediction tasks is even worse 
(e.g., semantic segmentation)
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Cerebellum parcellation 
(Carass et al., Neuroimage 2018)  

 

Brain tissues (6-month infant) 
(Li et al., TMI 2019)  

 

Subcortical structures 
(Dolz et al., Neuroimage 2018) 

 

Brain tumours 
(Njeh et al., CMIG 2015)  

 

Organs at risk
 (Dolz et al., Med. Phys. 2017)  

 

Incidental findings
 (Ben Ayed et al., MICCAI 2014)  

 

…and it gets more complex in medical imaging  
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Labels: Not only expensive, but might need expert knowledge 
   In medical image segmentation: we are not anywhere close to the 5k of Cityscapes 

Crowdsourcing?

Dense 3D annotations: several hours
(of radiologist time)
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Semi-supervised learning (SSL)
A lot of non-annotated data, and a fraction of points annotated

Full annotations Semi-supervised 

Figures from Lin et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation, CVPR 2016  
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[MRI Prostate segmentation:  Figure from Zhu et al., Boundary-weighted Domain Adaptive Neural Network for 

Prostate MR Image Segmentation ArXiv 2019]

Domain shifts make things worse 
(even for the same task and with full annotations in one domain)
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[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018]

Domain shifts: within and across modalities 
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Unsupervised domain adaptation (UDA)  

No labels for the target
We have labels for 
the source domain

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018]

11



 

Bad generalization to the target

[Images from Dou et al., PnP-AdaNet: Plug-and-play adversarial domain adaptation network with a 
benchmark at cross-modality cardiac segmentation ArXiv 2018] 12



 Figures from [Zhang et al., A Curriculum Domain Adaptation Approach to the Semantic 
Segmentation of Urban Scenes TPAMI 2019]

A lot of interest in computer vision as well: 
Domain shifts are everywhere BUT we cannot label everything 

“train” 
GTA

“bus” 
GTA

“train” 
Cityscapes
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Cityscapes (5000 images): labeling of 1 image takes 90 min at average [Cordt et al., CVPR 2016] 

Zurich

Frankfurt
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A lot of interest in computer vision as well: 
Domain shifts are everywhere BUT we cannot label everything 



UDA = SSL + domain shift 
 

 Domain 
shifts     

 
unlabelled     

 labelled     

 SSL      UDA     
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Test Time Adaption (TTA) or Source-Free Domain Adaptation (SFDA) 
UDA without access to the source data 
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 No access to the source data     

 just access to the 
model    



Adaption                vs.                       Training from scratch
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• Efficient re-use of large models

• Started in NLP
�  BERT (2018): 340M parameters, trained on then English Wikipedia 2,5 B word
� GPT-3 (2020): 175B parameters, trained on hundreds of billions of words

• Gradually coming to computer vision
� CLIP (2021): 151M parameters, trained on 400 M (text, image) pairs
� DALL-E 2 (2022): 12B parameters

  

Shared resources                                                    private resources

 
 



An example of the benefits of large models: CLIP 
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[Radford et al., ICML 2021]



Desirable properties of a test-time adapter 
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• Model-agnostic
� so that the progress in architectures could be leveraged easily

• Robust to hyper-parameters 
� Ideally the same across different adaptation scenarios and tasks

• Lightweight

  



 

Few-Shot/SSL/UDA/TTA in a nutshell:
Leveraging unlabelled data with priors  

• Structure-driven priors: Regularization

• Knowledge-driven priors (e.g., anatomical constraints)

• Invariance priors (e.g., contrastive learning)

• Multi-modal priors (e.g., text info associated with the images)
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Laplacian regularization 
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Only labeled points    
Unlabeled 

points    

  In SSL: Learning from both labeled and unlabeled data 
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Only labeled points    
Unlabeled 

points    
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  In SSL: Learning from both labeled and unlabeled data 



Only labeled points    
Unlabeled 

points    

Labeled points     Unlabeled points     
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  In SSL: Learning from both labeled and unlabeled data 



 Labels
 

 e.g.: softmax outputs    

 e.g.: cross-entropy 
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  In SSL: Learning from both labeled and unlabeled data 



 Labels
 

 e.g.: cross-entropy 
 e.g.: Laplacian regularization    
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 e.g.: softmax outputs    

  In SSL: Learning from both labeled and unlabeled data 



  Laplacian regularization: Standard in classical SSL  

• [Weston et al., Deep Learning via semi-supervised embedding, 
ICML 2008]

• [Belkin et al., Manifold regularization: a geometric framework for 
learning from Labeled and Unlabeled Examples, JMLR 2006]

• [Zhu et al., Semi-Supervised Learning Using Gaussian Fields and 
Harmonic Functions, ICML 2003] 
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  Example: Semi-supervision loss for segmentation 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018]
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 On the vertices of the simplex (binary variables), 
this is exactly the popular Potts model in CRFs   

  Example: Semi-supervision loss for segmentation 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018]
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Partial CE only + direct CRF loss Ground truth

  Example: Semi-supervision loss for segmentation 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018] 
[Marin et al.,  Beyond gradient descent for regularized segmentation losses, CVPR 2019] 30



   

  Example: Semi-supervision loss for segmentation 

97.6% of full supervision performance with 3% of the labels! 

[Tang et al., On regularized  losses for weakly supervised segmentation, ECCV 2018] 
[Marin et al.,  Beyond gradient descent for regularized segmentation losses, CVPR 2019] 31



Laplacian Regularized Few-Shot Learning
[Ziko et al., ICML 2020] 
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Few-shot learning

    A very large body of recent works, mostly based on: 

Meta-learning
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Base training with 
enough labeled data
 
(base classes different 
from the test classes)

Meta-Learning or “learning-to-learn”
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learn initial model 

Meta-Learning or “learning-to-learn”

35



Create artificial 
episodes for 
episodic training

Vinyal et al, (Neurips ‘16),
Snell et al,  (Neurips ‘17), 
Sung et al,  (CVPR ‘ 18),
Finn et al,  (ICML‘ 17),
Ravi et al,  (ICLR‘ 17),
Lee et al,  (CVPR‘ 19),
Hu et al, (ICLR  ‘20),
Ye et al, (CVPR  ‘20), . . .

Meta-Learning or “learning-to-learn”
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Taking a few steps backwards

Simple baselines and good regularization 
outperform convoluted meta-learning approaches

 

[Chen et al., ICLR’19]; [Tian et al., ECCV’20]; [Veilleux et al., NeurIPS’21];  
[Dhillon et al., ICLR’20]; [Ziko et al., ICML’20]; [Boudiaf et al., NeurIPS’20]  
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Taking a few steps backwards

Simple baselines and good regularization 
outperform convoluted meta-learning approaches

 

[Chen et al., ICLR’19]; [Tian et al., ECCV’20]; [Veilleux et al., NeurIPS’21]; 
[Dhillon et al., ICLR’20]; [Ziko et al., ICML’20]; [Boudiaf et al., NeurIPS’20]  

Entropy 
regularization 

Laplacian 
regularization 

Mutual-information 
regularization 
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Baseline Framework

No need to 
meta-train

39



Baseline Framework

Conventional 
training

Types of test-time 
prediction:

Induction vs. Transduction
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Transductive vs. inductive test-time prediction
 

14

Induction
(one test sample at a time)

Transduction
( joint test-time prediction)



Transductive vs. inductive test-time prediction
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Transduction is popular in few-shot learning, e.g.,

[Finn et al., ICML’17]
(MAML: Trans. batchnorm)

[Dhillon et al., ICLR’20]
(Entropy Min)

[Ziko et al., ICML’20]
(Laplacian Regularization)

[Boudiaf et al., NeurIPS’20]
(Information Maximization)

  

Transduction
( joint test-time prediction)



Why transduction is a relevant and 
promising avenue for adaptation?

 

15

• Tons of practical scenarios that allow transduction
� image segmentation, videos streams, smart-device photos, autonomous vehicles, 

medical imaging, demographic or financial records, etc.

Support Query ground-truth Inductive Transductive

Boudiaf et al., Few-shot segmentation without meta-learning: A good transductive inference is all you need? CVPR 2021 



Why transduction is a relevant and 
promising avenue for adaptation?
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• Transduction benefits from the statistics of unlabeled test data  

• Widely used in classical machine learning: [Vapnik 99]
� e.g., graph regularization & label propagation techniques



Laplacian regularization for test-time prediction
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[Ziko et al., ICML’20]

Unknown label assignments for query points
(equal to 1 if sample p belongs to class c and 0 otherwise) 



Laplacian regularization for test-time prediction
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[Ziko et al., ICML’20]

Feature embedding 
(fixed, no re-training) 



Laplacian regularization for test-time prediction
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[Ziko et al., ICML’20]

mean of the support samples in class c



Laplacian regularization for test-time prediction
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[Ziko et al., ICML’20]

Minimizing this term is trivial
(assign a sample to the nearest mean)



Laplacian regularization for test-time prediction
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[Ziko et al., ICML’20]

Laplacian regularization
(encourages nearby samples to have the same assignments)

Affinity between feature vectors



Linear first-order approximation 
on the concave part of E(Z)

 (an upper bound)

Current solution
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Optimization: Concave-Convex procedure

Update

Yuille & Rangarajan, The concave-convex procedure (CCCP), NIPS 2001 



The results question an abundant meta-learning literature   

Several recent baselines made similar observations:
 [Chen et al., ICLR’19]; [Tian et al., ECCV’20]; [Dhillon et al., ICLR’20]; [Boudiaf et al., NeurIPS’20]  

51
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More realistic benchmark: Further surprises  

More realistic few-shot tasks (Dirichlet-sampled)    
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[Veilleux et al., NeurIPS’21]    

Dirichlet 
parameter    

Balanced tasks
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More realistic benchmark: Further surprises  

More realistic few-shot tasks (Dirichlet-sampled)    
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[Veilleux et al., NeurIPS’21]    

Dirichlet 
parameter    

Randomly balanced tasks
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Parameter-free online test-time adaptation
[Boudiaf et al., CVPR’22] 
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  Test-time adaptation re-visited 
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State-of-the-art TTA methods, e.g., TENT: [Wang et al., ICLR’21]

 

Network adaptation    Needs different hyper-parameters for 
each target scenario    

Evaluation in [Boudiaf et al., CVPR’22] 



  Regularizing the network outputs behave better:
Laplacian in action, again! 
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Correcting only the network 
probability outputs    

LAME
 (Laplacian-Adjusted Maximum Likelihood Estimate)     

[Boudiaf et al., CVPR’22] 
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  Transferability of hyperparameters across models 
 [Boudiaf et al., CVPR’22] 



Constrained deep networks 
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Anatomical priors (e.g., shapes)
Partially labeled data

(e.g., exploiting organ relationships)

A lot of priors in medical 
imaging

Constrained optimization (in deep networks)  

Data meet domain knowledge    
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Full 
annotations

Semi-supervised

Full annotations

Partial annotations for cross-entropy

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  
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Size information
 
 61

[Kervadek et al., MedIA’19]    

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  
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Size information
 
 62

[Kervadek et al., MedIA’19]    

Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

Loss
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Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

[Kervadek et al., MedIA’19]    
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Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

[Kervadek et al., MedIA’19]    
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The exciting part: 90% of full supervision Dice with 0.1% of labels 
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Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

[Kervadek et al., MedIA’19]    
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The surprising part: Lagrangian optimization is much worse than a simple penalty 
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Example: Left ventricle segmentation in 
cardiac MRI with volumetric constraints  

[Kervadek et al., MedIA’19]    
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[Kervadek et al., MIDL’21]    

Beyond size: Exploring shape priors as 
functions of network outputs  
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[Kervadek et al., MIDL’21]    

Beyond size: Exploring shape priors as 
functions of network outputs  

Spatial coordinates
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A few shape descriptors are surprisingly powerful in 
Test-Time Adaptation for Segmentation   

[Bateson et al., MICCAI 2022]    

Ground truth  
 

No adapt  
 

Shape-constrained  
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Thank you…  
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