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A New Era in Wireless Networks

I Mobile network operators face new challenges:
I Continuously-growing mobile data traffic;
I New services: mobile augmented reality, video analytics, etc;
I New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

I This requires a fundamental shift in the way we design and manage networks.

I Previous network evolution steps:

1. Increase point-to-point data transfer capacity;

2. Improve content delivery capacity;

3. Incorporate NFV solutions and multi-access edge computing;

4. Support in-network and edge analytics.
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Edge Analytics

I Collect the data:
I From where? How much? How often?

I Transfer the data:
I To which destinations? Over which routes? How fast?

I Process the data:
I Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

New Trade-offs: Accuracy vs. lifetime vs. volume of tasks vs. resources’ consumption

I Energy, in particular, is the common currency all these operations spend!

I Opportunity: Softwarization of networks, convergence of comp. & comms.
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Optimizing vBS

I The flexibility and agility of softwarization comes at a cost.

I A plenitude of configuration options that is difficult to discern and optimize;
I which may lead to unpredictable resource consumption, e.g., in terms of energy.

I Two important problems:

1. How to select transmission power, MCS and airtime for each vBS in order to maximize
the served traffic (throughput) and power consumption.

2. How to select transmission power, MCS and airtime for each vBS in order to maximize
the throughput subject to a hard power consumption threshold.

I We need to answer two key questions:

1. What is the performance and energy consumption profile of vBSs?

2. How can we optimize their operation using an adaptive and platform-oblivious approach?

J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez, G. Iosifidis: Orchestrating Energy-Efficient vRANs:
Bayesian Learning and Experimental Results, IEEE Trans. on Mobile Computing, 2022.
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Experimental Evaluation

I A testbed with a vBS, user equipement (UE), and a digital power meter.

I 2 Ettus Research USRP B210 (radio part) and 2 Intel NUCs with CPU i7-8559U (BBU).

I srsLTE suite to implement the BBU for both the eNB and UE

I Select the 10 MHz bandwidth.

I Digital power meter GW-Instek GPM-8213 along with the adapter GPM-001.

I Integrated O-RAN E2 interface and the ability to change vBS configurations on-the-fly.

I Generate the traffic load for both DL and UL using mgen.

Virtualized Base Station (vBS)

Baseband Unit (BBU)

Radio Unit (RU)

GW-Instek  
GPM-001 Adapter

Power Meter
GW-Instek GPM-8213

User Equipment (UE)

Iosifidis, TU Delft Network Management for Analytics
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Experiments (1)

I BBU/CPU cost & Impact of Platform

4

Experimental evaluation
BBU/CPU cost & impact of computing platform.

Radio 
contribution

Computational 
contribution

Different computing platforms
Intel NUCs for the SF PCs, and two high-

performance computation servers.
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Experiments (2)

I Impact of SNR and MCS

5

Experimental evaluation
Impact of SNR and MCS

Decrease of channel quality
The higher the decoding time the 

higher the consumed power
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Experiments (3)

I Configuration Options and Impact of Scheduler

6

Experimental evaluation
Configuration options and impact of scheduler

Eight different configurations with 
the same Throughput in the UL

Joint effect of MCS and airtime on 
the consumed power
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Experiments (4)

I Coupling of UL and DL

7

Experimental evaluation
Coupling UL and DL
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Conclusions from Experiments

I Characterizing the vBS power cost is intricate as it depends on traffic, SNR, MCS
and airtime.

I There are many DL and UL configurations and some of them present non-linear
and non-monotonic relations with power and throughput.

I The power consumption depends on the BBU platform and radio scheduler.

I This hinders the derivation of general consumption models.

I We propose the use of online learning to devise goal-driven configuration policies.

Iosifidis, TU Delft Network Management for Analytics
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Problem Formulation

I Basic parameters and variables of the model.

I Context for downlink: ωdl
t := [c̄dl

t , c̃
dl
t , d

dl
t ]

I c̄dl
t and c̃dl

t are the mean and variance of the DL CQI across all users in previous period.

I Context for uplink: ωul
t := [c̄ul

t , c̃
ul
t , d

ul
t ]

I Actions for downlink: xdl
t := [pdl

t ,m
dl
t , a

dl
t ]

I pdl
t is a transmission power control (TPC) policy for the max allowed vBS Tx power;

I mdl
t is the highest MCS eligible (DL MCS policy);

I adl
t ∈ A

dl is the maximum vBS transmission airtime (DL airtime policy).

I Actions for uplinkk: xul
t := [mul

t , a
ul
t ]

I Reward:

r(ωt , xt ) := log

(
1 +

Rdl (ωdl
t , x

dl
t )

ddl
t

)
+ log

(
1 +

Rul (ωul
t , x

ul
t )

dul
t

)

where Rdl ,Rul is the achieved throughput in DL and UL, resp.

Iosifidis, TU Delft Network Management for Analytics
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Case 1: Balancing Performance & Cost

I The power supply is scarce or the operator needs to reduce OpEx.

I Pareto optimization via scalarization:

u(ωt , xt ) := r(ωt , xt )− δ · B
(
P(ωt , xt )

)
,

I Goal: minimize (contextual) regret:

RT :=
T∑

t=1

(
max
x′∈X

u(ωt , x ′)− u(ωt , xt )

)
,

I By finding a sequence of configurations {xt}T
t=1 such that:

lim
T→∞

RT /T = 0

I Key observation: outcomes of different configurations are correlated.

Iosifidis, TU Delft Network Management for Analytics
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Case 2: Hard Power Budget

I The vBS operates under a power budget Pmax , e.g., when PoE operation.

I Find for maximum throughput configuration meeting the budget. Using new regret:

Rs
T :=

T∑
t=1

(
max

x′∈{St (ωt )}t
r(ωt , x ′)− r(ωt , xt )

)
where in this case the decisions are selected from set of safe configurations:

St (ωt ) =
{

x ∈ X
∣∣∣ P(ωt , x) ≤ Pmax

}
.

I By finding a sequence of configurations {xt}T
t=1 such that:

lim
T→∞

Rs
T /T = 0

Iosifidis, TU Delft Network Management for Analytics
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Solution: Bayesian Online Learning

I Use Gaussian Processes (GPs)

I Context - action pair: z ∈ C = Ω× X

I Obtain noisy performance - cost observations {ut} for each {zt}.

I The posterior distribution of the objective function follows a GP with

mean µT (z) = kT (z)>(KT + ζ
21T )−1yT

variance kT (z, z′) = k(z, z′)− kT (z)>(KT + ζ
21T )−1kT (z′)

where kT (z) = [k(z1, z), . . . , k(zT , z)]>, KT (z) is the kernel matrix [k(z, z′)]z,z′∈ZT
,

and 1T is the T -dimension identity matrix.

I With GPs we can estimate the distribution of unobserved values z ∈ Z;

I Thus, to gradually learn the function that we wish to optimize.

I How do we leverage this information? Using the acquisition function:

xt = arg max
x∈X

µt−1(ωt , x) +
√
βkt−1(ωt , x)

Iosifidis, TU Delft Network Management for Analytics
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Solution: Bayesian Online Learning
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BP-vRAN Algorithm

Trinity College Dublin, The University of Dublin 15

Bayesian Online Learning Solutions
BP-vRAN: Balancing performance and cost

The contextual regret is upper bounded with high probability:I The algorithm ensures a probabilistic bound for regret:

P
(

RT ≤
√

C1TβT γT

)
≥ 1− ε,

Iosifidis, TU Delft Network Management for Analytics
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Safe BP-vRAN Algorithm

Trinity College Dublin, The University of Dublin 17

Bayesian Online Learning Solutions
SBP-vRAN: Safe Bayesian Optimization

I We need an additional GP for assessing the safety of the constraint.

St =
{

x ∈ X
∣∣∣ µc

t−1(ωt , x) + βtσ
c
t−1(ωt , x) ≤ Pmax

}
.

I The configuration is selected using the CGP-UCB policy subject to the safe set:

xt = argmax
x∈St

µf
t−1(ωt , x) +

√
βtσ

f
t−1(ωt , x),

Iosifidis, TU Delft Network Management for Analytics
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Experimental Evaluation (Convergence)

Trinity College Dublin, The University of Dublin 18

Experimental evaluation
Convergence evaluation

BP-vRAN

SBP-vRAN
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Experimental Evaluation (Convergence)

Trinity College Dublin, The University of Dublin 19

Experimental evaluation
Performance in real network contexts

Realistic context pattern:

Trinity College Dublin, The University of Dublin 20

Experimental evaluation
Performance in real network contexts

BP-vRAN

SBP-vRAN
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Conclusions

I Presented an in-depth experimental study of the energy behavior of vBSs.

I Found a complex relationship between performance, power cost and vBS config.

I This complexity can only be tamed with data-driven machine-learning solutions.

I We have proposed an online learning framework to achieve two goals:
I Balance performance and power cost;
I Maximize performance subject to power constraints vBS, e.g., PoE.

I Theoretical guarantees; high data-efficiency and convergence speed.

I Real-data evaluation verified convergence and efficacy in practice.

I Code and datasets online: https://jaayala.github.io/

Iosifidis, TU Delft Network Management for Analytics

https://jaayala.github.io/
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Edge Analytics

I How to orchestrate the network in order to support real-time video analytics?

I E.g., capture and process video frames in real time using MEC.

I Challenges:

I Multiple criteria: fast and accurate inferences; or energy-aware inferences;

I Multiple decisions: video frame quality; network control; AI pipeline configuration;

I Need to jointly optimize all these decisions;

I Performance depends on equipment and on the actual processed data.
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Edge Analytics over WiFi

I We study a basic scenario – key component of different applications.

Encode Image

Display Results

Neural Network
Processing

Collect Results

Mobile Device Edge Server

Capture Image Decode Image

802.11ac 
Access Point

I We have built an exemplary system:

I An Android app captures and sends images to server for object recognition using YOLO;

I Bounding boxes of recognized objects returned to the mobile; process repeats;

I Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect
both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. Iosifidis, Auto-ML for Video Analytics with Edge Computing, IEEE
INFOCOM 2021.
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Edge Analytics over vBS

I We also study the case where the network is cellular.

I How to jointly configure the service (frame features); vBS (MCS, Power); and edge
server (GPU power)?

EdgeBOL: Automating Energy-savings for Mobile Edge AI CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

multiple users or other services. To demonstrate this, we emulate a
scenario with 10x more load, and present the same plot in Fig. 6.
Di�erently now, we observe that the MCS policy has a negative
impact on the BS power consumption for higher-resolution images
whereas lower-resolution images cause lower power consumption
for higher MCS policies. This motivates the need for learning algo-
rithms that adapt the system to the service requirements.
Conclusion: Our system consists of a large number of highly-
coupled parameters with non-trivial relationship with the perfor-
mance and energy cost. As a consequence, we resort to model-free
contextual bandit methods, an area of machine learning applied
in many control problems, to design a controller that adapts au-
tonomously to context changes and the underlying platform.

4 SYSTEM AND PROBLEM FORMULATION
4.1 System
We consider a GPU-powered edge server providing an AI service
through a radio access network. Speci�cally, we consider an ob-
ject recognition service that can be used, for instance, for security
surveillance or fault detection in industrial chains. We assume that
a slice dedicated for this service is created including virtualized
Base Station (vBS) and the edge server [40, 42]. This is illustrated
by the orange boxes in Fig. 7. The service operation is as follows:
users capture images that are sent to the edge server through the
uplink of the radio interface of the vBS. Then, the server’s GPU
processes the incoming data and generates a response, which is
sent back to the users through the vBS downlink.

The work�ow of EdgeBOL is also simple: EdgeBOL periodically
observes the context (we provide an approprite de�nition later),
orchestrates the resources assigned to the wireless access and the
GPU-powered service via a set of control policies, and uses a cost
metric aggregating key performance indicators of the system to
make better decisions over time. To this end, we follow closely the
framework of O-RAN [51], a carrier-led alliance of operators and
manufacturers to build open and intelligent RAN solutions [24].

As shown in Fig. 7, EdgeBOL interacts with O-RAN’s Non-Real-
Time RAN Intelligent Controller (RIC) to enforce radio control
policies in O-RAN compliant eNBs or gNBs (O-eNBs/O-gNBs):

• An rApp (within O-RAN’s non-RT RIC), as de�ned in [50],
interacts with the learning agent and handles O-RAN’s A1
interface (speci�cally, the A1’s Policy Management Service)
as speci�ed in [48, 49, 52] to deploy the MCS and radio
airtime policies de�ned above.

• An xApp handles the A1-P service from O-RAN’s near-RT
RIC side, and uses an E2 interface to forward radio policies
to the base station, including O-DU, O-CU and O-RU in case
of 5G (see Sections 4.3.4-4.3.6 in [51]), and O-eNB in case of
4G (see Section 4.3.7 in [51]).

• The E2 interface, de�ned in [47], is also used to gather vBS
KPIs (power consumption, in our case), which is forwarded
to the non-RT RIC through the O1 interface. Then, a sec-
ond xApp manages data KPIs received from the base station,
which in our case consists of samples of the BS power con-
sumption, and forwards it to the learning agent.

SMO Framework

O-RAN Near-RT RIC

O-RAN Non-RT RIC

O1

O-eNB, O-gNB

xApp 
(Database)

E2

rApp 
(Policy service)

rApp 
(Data collector)

EdgeBol

xApp 
(Policy service)

A1

Edge 

Orchestrator

Service 

controller

GPU server

3GPP radio interface 
(NR, LTE)

C
u

s
to

m
 

in
te

rf
a

c
e

User 

application 

(e.g., video 

app)

3GPP backhaul interface
(S1, N3)

Figure 7: O-RAN compliant system architecture.

We assume that both the O-eNB/O-gNB and the GPU server can
implement the con�gured policies (through radio scheduling at the
MAC layer for the former, through a driver such as NVIDIA’s for the
latter). This framework allows us to use machine learning to solve
our problem. Namely, we formulate the problem as a contextual
multi-armed bandit or contextual bandit.

4.2 Problem Formulation
Let us formalize in the following the context space, action space,
and the performance indicators in our system.

Contexts. We de�ne the context at each time period C as 2C :=
[=C , 2̄C , 2̃C ] 2 C, where =C is the number of users in the slice, and
2̄C and 2̃C are the mean and the variance of the UL channel quality
indicator (CQI) across all users in the slice during the previous
period, and C is the context space.

Control policies. Let H denote the set of possible image reso-
lutions; A the set of possible airtime con�gurations (uplink radio
resources) that can be assigned; � the possible GPU speed con�gu-
rations; and M the set of all possible MCS policies as de�ned above.
Hence, we let GC := [[C ,0C ,WC ,<C ] 2 X := H ⇥A ⇥ � ⇥M denote
the control policy selected at time period C . The GPU speed is con-
�gured in the same machine where the learning agent runs, the
airtime and the MCS policies can be sent to the vBS through the A1-
P interface of O-RAN architecture [51], and the image resolution is
indicated to the user using the application of the service. We focus
on uplink radio policies because, as our experiments con�rm, such
AI services have little impact on the downlink as the data surge
goes usually upstream with only simple information (bounding
boxes, labels) �owing downstream.

Performance indicators. Similarly, our performance indica-
tors were introduced in §3. The service delay experienced by user
8 is denoted by ⇡8 (2, G), and the mAP is denoted by &8 (2, G). We
then let 3 (2, G) := max8 ⇡8 (2, G) and d (2, G) := min8 &8 (2, G) denote
the highest delay and lowest mAP, respectively, across all users.
The consumed power at the edge server is denoted by ?B (2, G), and
the consumed power at the vBS is denoted by ?1 (2, G). Note that in
practice the observations of the performance indicators are noisy
(even in static setups) since the system is stochastic in nature. Re-
markably, our solution intrinsically deals with noisy observation as
we detail in the next section. Henceforth, we denote by 3C (2C , GC ),
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Figure 1: Mean average precision (mAP) vs. service delay for
images with di�erent resolutions.

P���������� I�������� 1 (S������ �����). End-to-end delay
that includes the image pre-processing at the user side, its transmis-
sion, the processing at the server (GPU delay), and the return of the
bounding boxes and labels.

P���������� I�������� 2 (M��� A������ P��������). The
service’s precision is estimated by the Mean Average Precision (mAP),
a popular metric in computer vision for object recognition applica-
tions [19]. On the one hand, precision is de�ned as the ratio of true
positives over all positive classi�cations. On the other hand, the recall
measures how well these positives are identi�ed by calculating the
ratio between true positives over the sum of true positives and false
negatives. The Intersection over Union (IoU) measures the overlap
between the calculated bounding box and the ground truth. IoU values
above a threshold, which in our case is set to 0.5, trigger a true positive.
Then, given a set of images, the Average Precision (AP) corresponds to
the area below the precision-recall curve. Finally, the mAP is calcu-
lated as the mean AP over all object categories, hence ranges from 0
(worst performance) to 1 (best performance).

According to our measurements, the most relevant feature that
a�ects the mAP is the image resolution, de�ned in Policy 1.

P����� 1 (I���� ����������). This policy sets the average encod-
ing of every image (number of pixels) generated by the users, which
can be enforced by the service. In our experiments, the maximum
(100%) resolution is 640x480 pixels. Note that, at any give time in-
stance, the resolution of one image, set by the service application, may
be larger or smaller than the policy as long as the average across the
whole period and users respects the policy threshold.

We illustrate this in Fig. 1, which shows the trade-o� between ser-
vice delay and mAP for the COCO images dataset encoded with dif-
ferent resolutions. The remaining con�guration policies (described
later) are �xed so service delay is minimum. The results are rather
intuitive: (8) Higher-resolution images carry more pixels encoded
in a larger amount of data. Therefore, higher-resolution images
incur higher delay due to longer transmission time over the radio
interface. (88) Lower-resolution images cause the service to provide
lower mAP performance because they carry less useful information
for the object detection engine. Speci�cally, in our experiments, a
72% improvement in service delay is associated with a reduction of
precision that ranges between 10% to 50%.

Delay, energy consumption, and radio policies. There also ex-
ists a trade-o�, which naturally appears in many resource control
problems [16], between the quality of service and the associated
energy cost to the provider of such service. To explore this trade-o�,
we introduce a policy that governs the allocation of radio resources,
de�ned as Policy 2, and an additional metric that assesses part of
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Figure 2: Service delay vs. server’s power consumption for
images with di�erent resolutions and radio policies.
the aforementioned cost: the server’s power consumption, de�ned
as Performance Indicator 3.

P����� 2 (R���� A������). This radio policy imposes a constraint
on the amount of radio resources (duty cycle) the BS allocates to the
service’s tra�c (i.e., for all users). The MAC layer radio scheduler,
which operates at millisecond-level granularity then must allocate
radio resources (which may be di�erent across users depending on
their instantaneous channel quality) such that the threshold set by
the policy is respected. Due to the nature of this AI service, we focus
on uplink communication.

P���������� I�������� 3 (S����� ����� �����������). Power
consumption associated with computational load of the service’s re-
quests, which is dominated by the GPU power consumption.

Fig. 2 depicts the service delay vs the server power consumption,
for di�erent airtime radio policies and image resolutions. Similarly
as before, higher-res images increase service delay due to the longer
transmission time of requests. We now observe that this occurs
irrespective of the radio policy con�guration. However, the selected
radio policy has an important impact on service delay as well.
This is rather expected since lower airtime implies lower usage of
radio resources, which further increase the transmission time of the
requests at the radio interface. Speci�cally, our experiments show
that an 80% increase of the airtime improves the delay between 65%
and 80%. Concerning the server’s power consumption, lower-res
images and lower radio resource allocations increase this cost for
the service provider. Speci�cally, there is a 56% increase in power
consumption for an 80% increase in radio time resource; a similar
increase attained when there is a 75% increase in image resolution.
This is due to the fact that increasing the radio resources allow the
user to send a higher rate of requests in a similar way than low-res
images do, which ultimately increase the workload assigned to the
service’s resources (the GPU in this case).

Delay, energy costs, and service policies. We study the impact
of the computing allocation policies on the service quality of service.
To this end, we de�ne an additional con�guration policy.

P����� 3 (GPU �����). The server’s policy is a GPU power limit
that adapts the processing speed of a GPU (or a pool of GPUs) in a
slice to meet the adopted power constraint. The GPU controller (e.g.,
NVIDIA driver) may change the GPU speed at any given time (e.g.,
for di�erent video frames) as long as the GPU power set by this policy
is respected.

In our experimental setup, the GPU speed can be set through
a con�guration parameter available in Nvidia GPU drivers. Fig. 3
(top) depicts the service delay and the server’s power consumption
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I Outline of setup:

I Service delay: image proc. at UE, transmission; GPU processing; return of labels.

I Mean Average Precision (mAP): typical metric used in object recognition problems.

I Server power consumption (mainly GPU).

I BS power consumption *(BBU processing).

I Control policies:
I Average image encoding of every image generated; enforced by the service.
I Radio airtime and MCS.
I GPU power limit that adapts the GPU speed.
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Thank you!
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