Network Resource Management for Edge Analytic Services

George Iosifidis

Assistant Professor, TU Delft Visiting Academic, Amazon

SystemX, Paris, 20 January 2022

- Mobile network operators face new challenges:
 - Continuously-growing mobile data traffic;
 - New services: mobile augmented reality, video analytics, etc;
 - New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.
- This requires a fundamental shift in the way we design and manage networks.
- Previous network evolution steps:
 - 1. Increase point-to-point data transfer capacity;
 - 2. Improve content delivery capacity;
 - 3. Incorporate NFV solutions and multi-access edge computing;
 - 4. Support in-network and edge analytics.

- Mobile network operators face new challenges:
 - Continuously-growing mobile data traffic;
 - New services: mobile augmented reality, video analytics, etc;
 - New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.
- This requires a fundamental shift in the way we design and manage networks.
- Previous network evolution steps:
 - 1. Increase point-to-point data transfer capacity;
 - Improve content delivery capacity;
 - 3. Incorporate NFV solutions and multi-access edge computing;
 - 4. Support in-network and edge analytics.

- Mobile network operators face new challenges:
 - Continuously-growing mobile data traffic;
 - New services: mobile augmented reality, video analytics, etc;
 - New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.
- This requires a fundamental shift in the way we design and manage networks.
- Previous network evolution steps:
 - 1. Increase point-to-point data transfer capacity;
 - Improve content delivery capacity;
 - 3. Incorporate NFV solutions and multi-access edge computing;
 - 4. Support in-network and edge analytics.

- Mobile network operators face new challenges:
 - Continuously-growing mobile data traffic;
 - New services: mobile augmented reality, video analytics, etc;
 - New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.
- This requires a fundamental shift in the way we design and manage networks.
- Previous network evolution steps:
 - 1. Increase point-to-point data transfer capacity;
 - 2. Improve content delivery capacity;
 - 3. Incorporate NFV solutions and multi-access edge computing;
 - 4. Support in-network and edge analytics.

- Mobile network operators face new challenges:
 - Continuously-growing mobile data traffic;
 - New services: mobile augmented reality, video analytics, etc;
 - New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.
- This requires a fundamental shift in the way we design and manage networks.
- Previous network evolution steps:
 - 1. Increase point-to-point data transfer capacity;
 - 2. Improve content delivery capacity;
 - 3. Incorporate NFV solutions and multi-access edge computing;
 - 4. Support in-network and edge analytics.

- Mobile network operators face new challenges:
 - Continuously-growing mobile data traffic;
 - New services: mobile augmented reality, video analytics, etc;
 - New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.
- This requires a fundamental shift in the way we design and manage networks.
- Previous network evolution steps:
 - 1. Increase point-to-point data transfer capacity;
 - 2. Improve content delivery capacity;
 - 3. Incorporate NFV solutions and multi-access edge computing;
 - 4. Support in-network and edge analytics.

- Collect the data:
 - From where? How much? How often?
- Transfer the data:
 - To which destinations? Over which routes? How fast?
- Process the data:
 - Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

- Energy, in particular, is the common currency all these operations spend!
- **Opportunity:** Softwarization of networks, convergence of comp. & comms.

- Collect the data:
 - From where? How much? How often?
- Transfer the data:
 - To which destinations? Over which routes? How fast?
- Process the data:
 - Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

- Energy, in particular, is the common currency all these operations spend!
- **Opportunity:** Softwarization of networks, convergence of comp. & comms.

- Collect the data:
 - From where? How much? How often?
- Transfer the data:
 - To which destinations? Over which routes? How fast?
- Process the data:
 - Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

- Energy, in particular, is the common currency all these operations spend!
- **Opportunity:** Softwarization of networks, convergence of comp. & comms.

- Collect the data:
 - From where? How much? How often?
- Transfer the data:
 - To which destinations? Over which routes? How fast?
- Process the data:
 - Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

- Energy, in particular, is the common currency all these operations spend!
- **Opportunity:** Softwarization of networks, convergence of comp. & comms.

- Collect the data:
 - From where? How much? How often?
- Transfer the data:
 - To which destinations? Over which routes? How fast?
- Process the data:
 - Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

- Energy, in particular, is the common currency all these operations spend!
- **Opportunity:** Softwarization of networks, convergence of comp. & comms.

- Collect the data:
 - From where? How much? How often?
- Transfer the data:
 - To which destinations? Over which routes? How fast?
- Process the data:
 - Where? How much computing? Which AI/ML libraries?

New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection

New Metrics: Accuracy of inferences; number of successful AI tasks; utility of information, etc.

- Energy, in particular, is the common currency all these operations spend!
- Opportunity: Softwarization of networks, convergence of comp. & comms.

Optimizing vBS

- The flexibility and agility of softwarization comes at a cost.
 - A plenitude of configuration options that is difficult to discern and optimize;
 - which may lead to unpredictable resource consumption, e.g., in terms of energy.
- Two important problems:
 - 1. How to select transmission power, MCS and airtime for each vBS in order to maximize the served traffic (throughput) and power consumption.
 - How to select transmission power, MCS and airtime for each vBS in order to maximize the throughput subject to a hard power consumption threshold.
- We need to answer two key questions:
 - 1. What is the performance and energy consumption profile of vBSs?
 - 2. How can we optimize their operation using an adaptive and platform-oblivious approach?

J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez, G. Iosifidis: Orchestrating Energy-Efficient vRANs: Bayesian Learning and Experimental Results, IEEE Trans. on Mobile Computing, 2022.

Experimental Evaluation

- A testbed with a vBS, user equipement (UE), and a digital power meter.
 - 2 Ettus Research USRP B210 (radio part) and 2 Intel NUCs with CPU i7-8559U (BBU).
 - srsLTE suite to implement the BBU for both the eNB and UE
 - Select the 10 MHz bandwidth.
 - Digital power meter GW-Instek GPM-8213 along with the adapter GPM-001.
 - Integrated O-RAN E2 interface and the ability to change vBS configurations on-the-fly.
 - Generate the traffic load for both DL and UL using mgen.

Experiments (1)

BBU/CPU cost & Impact of Platform

Experiments (2)

Impact of SNR and MCS

Experiments (3)

Configuration Options and Impact of Scheduler

Experiments (4)

Coupling of UL and DL

Conclusions from Experiments

- Characterizing the vBS power cost is intricate as it depends on traffic, SNR, MCS and airtime.
- There are many DL and UL configurations and some of them present non-linear and non-monotonic relations with power and throughput.
- The power consumption depends on the BBU platform and radio scheduler.
- This hinders the derivation of general consumption models.
- We propose the use of online learning to devise goal-driven configuration policies.

Problem Formulation

Basic parameters and variables of the model.

- Context for downlink: $\omega_t^{dl} := [\bar{c}_t^{dl}, \tilde{c}_t^{dl}, d_t^{dl}]$
 - \bar{c}_{t}^{dl} and \tilde{c}_{t}^{dl} are the mean and variance of the DL CQI across all users in previous period.
- Context for uplink: $\omega_t^{ul} := [\bar{c}_t^{ul}, \tilde{c}_t^{ul}, d_t^{ul}]$
- Actions for downlink: $x_t^{dl} := [p_t^{dl}, m_t^{dl}, a_t^{dl}]$
 - p^{dl} is a transmission power control (TPC) policy for the max allowed vBS Tx power;

 - *m*^{dl}_t is the highest MCS eligible (*DL MCS policy*);
 a^{dl}_t ∈ A^{dl} is the maximum vBS transmission airtime (*DL airtime policy*).
- Actions for uplinkk: $x_t^{ul} := [m_t^{ul}, a_t^{ul}]$

► Reward:

$$r(\omega_t, x_t) := \log\left(1 + \frac{R^{dl}(\omega_t^{dl}, x_t^{dl})}{d_t^{dl}}\right) + \log\left(1 + \frac{R^{ul}(\omega_t^{ul}, x_t^{ul})}{d_t^{ul}}\right)$$

where R^{dl} , R^{ul} is the achieved throughput in DL and UL, resp.

Case 1: Balancing Performance & Cost

The power supply is scarce or the operator needs to reduce OpEx.

Pareto optimization via scalarization:

$$u(\omega_t, x_t) := r(\omega_t, x_t) - \delta \cdot B(P(\omega_t, x_t)),$$

Goal: minimize (contextual) regret:

$$R_T := \sum_{t=1}^T \left(\max_{x' \in \mathcal{X}} u(\omega_t, x') - u(\omega_t, x_t) \right),$$

• By finding a sequence of configurations $\{x_t\}_{t=1}^T$ such that:

$$\lim_{T\to\infty}R_T/T=0$$

Key observation: outcomes of different configurations are correlated.

Case 2: Hard Power Budget

- ▶ The vBS operates under a power budget *P_{max}*, e.g., when PoE operation.
- Find for maximum throughput configuration meeting the budget. Using new regret:

$$R_T^{\mathbf{s}} := \sum_{t=1}^T \left(\max_{x' \in \{S_t(\omega_t)\}_t} r(\omega_t, x') - r(\omega_t, x_t) \right)$$

where in this case the decisions are selected from set of safe configurations:

$$S_t(\omega_t) = \{ x \in \mathcal{X} \mid P(\omega_t, x) \leq P_{\max} \}.$$

• By finding a sequence of configurations $\{x_t\}_{t=1}^T$ such that:

$$\lim_{T\to\infty}R_T^s/T=0$$

Solution: Bayesian Online Learning

Use Gaussian Processes (GPs)

- Context action pair: $z \in C = \Omega \times X$
- Obtain noisy performance cost observations $\{u_t\}$ for each $\{z_t\}$.
- The posterior distribution of the objective function follows a GP with

mean
$$\mu_T(z) = k_T(z)^\top (K_T + \zeta^2 \mathbf{1}_T)^{-1} y_T$$

variance $k_T(z, z') = k(z, z') - k_T(z)^\top (K_T + \zeta^2 \mathbf{1}_T)^{-1} k_T(z')$

where $k_T(z) = [k(z_1, z), \dots, k(z_T, z)]^\top$, $K_T(z)$ is the kernel matrix $[k(z, z')]_{z, z' \in Z_T}$, and $\mathbf{1}_T$ is the *T*-dimension identity matrix.

With GPs we can estimate the distribution of unobserved values $z \in \mathcal{Z}$;

Thus, to gradually learn the function that we wish to optimize.

How do we leverage this information? Using the acquisition function:

$$x_t = \arg \max_{x \in \mathcal{X}} \mu_{t-1}(\omega_t, x) + \sqrt{\beta} k_{t-1}(\omega_t, x)$$

Solution: Bayesian Online Learning

new observation (x,)

V

BP-vRAN Algorithm

Algorithm 1 BP-vRAN: Performance and cost balancing

1: **Inputs:** Control Space \mathcal{X} , kernel k, β 2: Initialize: $y_0 = \emptyset$, $Z_0 = \emptyset$ 3: for t = 1, ..., T do Observe the context ω_t 4. $x_t = \operatorname{argmax}_{x \in \mathcal{X}} \ \mu_{t-1}(\omega_t, x) + \sqrt{\beta_t} \sigma_{t-1}(\omega_t, x)$ 5: Measure $R_t^{dl}(\omega_t^{dl}, x_t^{dl}), R_t^{ul}(\omega_t^{ul}, x_t^{ul})$ and $P_t(\omega_t, x_t)$ at the 6: end of the decision period tCompute $u_t(\omega_t, x_t)$ using (1), (2) and (3) 7: Update $Z_t \leftarrow Z_{t-1} \cup [\omega_t, x_t]$ 8: Update $y_t \leftarrow y_{t-1} \cup u_t(\omega_t, x_t)$ 9: Perform Bayesian update to obtain μ_t and σ_t $10 \cdot$ 11: end for

The algorithm ensures a probabilistic bound for regret:

$$\mathsf{P}\left(\mathsf{R}_{\mathsf{T}} \leq \sqrt{C_1 T \beta_T \gamma_T}\right) \geq 1 - \epsilon,$$

Safe BP-vRAN Algorithm

Algorithm 2 SBP-vRAN: Safe online optimization

1: Inputs: Control Space \mathcal{X} , Initial safe set S_0 , kernel k, β , P_{max} 2: Initialize: $u_0^f = \emptyset$, $u_0^c = \emptyset$, $Z_0 = \emptyset$ 3: for t = 1, ..., T do Observe the context ω_t 4: $S_t = S_0 \cup \{x \in \mathcal{X} \mid \mu_{t-1}^c(\omega_t, x) + \beta_t \sigma_{t-1}^c(\omega_t, x) < P_{\max}\}$ 5: $\begin{array}{l} x_t = \arg\max_{x \in S_t} \mu_{t-1}(\omega_t, x) + \sqrt{\beta_t}\sigma_{t-1}(\omega_t, x) \\ \text{Measure } R_t^{dl}(\omega_t^{dl}, x_t^{dl}), R_t^{ul}(\omega_t^{ul}, x_t^{ul}) \text{ and } P_t(\omega_t, x_t) \text{ at the} \end{array}$ 6: 7: end of the decision period tCompute $r_t(\omega_t, x_t)$ using (1) 8: Update $Z_t \leftarrow Z_{t-1} \cup [\omega_t, x_t]$ 9: Update $y_t^f \leftarrow y_{t-1}^f \cup r_t(\omega_t, x_t)$ 10: 11: Update $y_t^c \leftarrow y_{t-1}^c \cup P_t(\omega_t, x_t)$ 12: Perform Bayesian update to obtain μ_t^f , σ_t^f , μ_t^c and σ_t^c 13: end for

We need an additional GP for assessing the safety of the constraint.

$$S_t = \left\{ x \in \mathcal{X} \mid \mu_{t-1}^c(\omega_t, x) + \beta_t \sigma_{t-1}^c(\omega_t, x) \leq P_{\max} \right\}.$$

The configuration is selected using the CGP-UCB policy subject to the safe set:

$$x_t = \underset{x \in S_t}{\operatorname{argmax}} \ \mu_{t-1}^f(\omega_t, x) + \sqrt{\beta_t} \sigma_{t-1}^f(\omega_t, x),$$

Experimental Evaluation (Convergence)

Experimental Evaluation (Convergence)

Network Management for Analytics

Conclusions

- Presented an in-depth experimental study of the energy behavior of vBSs.
- Found a complex relationship between performance, power cost and vBS config.
- This complexity can only be tamed with data-driven machine-learning solutions.
- We have proposed an online learning framework to achieve two goals:
 - Balance performance and power cost;
 - Maximize performance subject to power constraints vBS, e.g., PoE.
- Theoretical guarantees; high data-efficiency and convergence speed.
- Real-data evaluation verified convergence and efficacy in practice.
- Code and datasets online: https://jaayala.github.io/

- How to orchestrate the network in order to support real-time video analytics?
 - E.g., capture and process video frames in real time using MEC.

- Challenges:
 - Multiple criteria: fast and accurate inferences; or energy-aware inferences;
 - Multiple decisions: video frame quality; network control; AI pipeline configuration;
 - Need to jointly optimize all these decisions;
 - Performance depends on equipment and on the actual processed data.

- How to orchestrate the network in order to support real-time video analytics?
 - E.g., capture and process video frames in real time using MEC.

Challenges:

- Multiple criteria: fast and accurate inferences; or energy-aware inferences;
- Multiple decisions: video frame quality; network control; AI pipeline configuration;
- Need to jointly optimize all these decisions;
- Performance depends on equipment and on the actual processed data.

- How to orchestrate the network in order to support real-time video analytics?
 - E.g., capture and process video frames in real time using MEC.

Challenges:

- Multiple criteria: fast and accurate inferences; or energy-aware inferences;
- Multiple decisions: video frame quality; network control; AI pipeline configuration;
- Need to jointly optimize all these decisions;
- Performance depends on equipment and on the actual processed data.

- How to orchestrate the network in order to support real-time video analytics?
 - E.g., capture and process video frames in real time using MEC.

- Challenges:
 - Multiple criteria: fast and accurate inferences; or energy-aware inferences;
 - Multiple decisions: video frame quality; network control; AI pipeline configuration;
 - Need to jointly optimize all these decisions;
 - Performance depends on equipment and on the actual processed data.

- How to orchestrate the network in order to support real-time video analytics?
 - E.g., capture and process video frames in real time using MEC.

- Challenges:
 - Multiple criteria: fast and accurate inferences; or energy-aware inferences;
 - Multiple decisions: video frame quality; network control; AI pipeline configuration;
 - Need to jointly optimize all these decisions;
 - Performance depends on equipment and on the actual processed data.

- We have built an exemplary system:
 - An Android app captures and sends images to server for object recognition using YOLO;
 - Bounding boxes of recognized objects returned to the mobile; process repeats;
 - Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. Iosifidis, Auto-ML for Video Analytics with Edge Computing, IEEE INFOCOM 2021.

▶ We study a basic scenario – key component of different applications.

We have built an exemplary system:

- An Android app captures and sends images to server for object recognition using YOLO;
- Bounding boxes of recognized objects returned to the mobile; process repeats;
- Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. Iosifidis, Auto-ML for Video Analytics with Edge Computing, IEEE INFOCOM 2021.

- We have built an exemplary system:
 - An Android app captures and sends images to server for object recognition using YOLO;
 - Bounding boxes of recognized objects returned to the mobile; process repeats;
 - Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. Iosifidis, Auto-ML for Video Analytics with Edge Computing, IEEE INFOCOM 2021.

- We have built an exemplary system:
 - An Android app captures and sends images to server for object recognition using YOLO;
 - Bounding boxes of recognized objects returned to the mobile; process repeats;
 - Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. Iosifidis, Auto-ML for Video Analytics with Edge Computing, IEEE INFOCOM 2021.

- We have built an exemplary system:
 - An Android app captures and sends images to server for object recognition using YOLO;
 - Bounding boxes of recognized objects returned to the mobile; process repeats;
 - Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. Iosifidis, Auto-ML for Video Analytics with Edge Computing, IEEE INFOCOM 2021.

Edge Analytics over vBS

- We also study the case where the network is cellular.
 - How to jointly configure the service (frame features); vBS (MCS, Power); and edge server (GPU power)?

J. Ayala, A. Saavedra, X. Costa-Perez, G Iosifidis, EdgeBOL: Automating Energy-savings for Mobile Edge AI, ACM CoNEXT, 2021.

Edge Analytics over vBS

Trade offs between service delay and service accuracy.

- Outline of setup:
 - Service delay: image proc. at UE, transmission; GPU processing; return of labels.
 - Mean Average Precision (mAP): typical metric used in object recognition problems.
 - Server power consumption (mainly GPU).
 - BS power consumption *(BBU processing).
 - Control policies:
 - Average image encoding of every image generated; enforced by the service.
 - Radio airtime and MCS.
 - GPU power limit that adapts the GPU speed.

Thank you!