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A New Era in Wireless Networks

> Mobile network operators face new challenges:

P Continuously-growing mobile data traffic;
P> New services: mobile augmented reality, video analytics, etc;
P> New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

losifidis, TU Delft Network Management for Analytics



A New Era in Wireless Networks

> Mobile network operators face new challenges:

P Continuously-growing mobile data traffic;
P> New services: mobile augmented reality, video analytics, etc;
P> New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

» This requires a fundamental shift in the way we design and manage networks.

losifidis, TU Delft Network Management for Analytics



A New Era in Wireless Networks

> Mobile network operators face new challenges:

P Continuously-growing mobile data traffic;
P> New services: mobile augmented reality, video analytics, etc;
P> New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

» This requires a fundamental shift in the way we design and manage networks.

> Previous network evolution steps:

1. Increase point-to-point data transfer capacity;

losifidis, TU Delft Network Management for Analytics



A New Era in Wireless Networks

> Mobile network operators face new challenges:

P Continuously-growing mobile data traffic;
P> New services: mobile augmented reality, video analytics, etc;
P> New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

» This requires a fundamental shift in the way we design and manage networks.

> Previous network evolution steps:

1. Increase point-to-point data transfer capacity;

2. Improve content delivery capacity;

losifidis, TU Delft Network Management for Analytics



A New Era in Wireless Networks

> Mobile network operators face new challenges:

P Continuously-growing mobile data traffic;
P> New services: mobile augmented reality, video analytics, etc;
P> New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

» This requires a fundamental shift in the way we design and manage networks.

> Previous network evolution steps:

1. Increase point-to-point data transfer capacity;
2. Improve content delivery capacity;

3. Incorporate NFV solutions and multi-access edge computing;

losifidis, TU Delft Network Management for Analytics



A New Era in Wireless Networks

> Mobile network operators face new challenges:

P Continuously-growing mobile data traffic;
P> New services: mobile augmented reality, video analytics, etc;
P> New clients: autonomous vehicles, drones, robots, Industry 4.0 systems, etc.

» This requires a fundamental shift in the way we design and manage networks.

> Previous network evolution steps:
1. Increase point-to-point data transfer capacity;
. Improve content delivery capacity;

. Incorporate NFV solutions and multi-access edge computing;

A w0 N

Support in-network and edge analytics.
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Edge Analytics
> Collect the data:
» From where? How much? How often?

> Transfer the data:
P To which destinations? Over which routes? How fast?

> Process the data:
> Where? How much computing? Which AI/ML libraries?
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Edge Analytics
> Collect the data:
» From where? How much? How often?

> Transfer the data:
P To which destinations? Over which routes? How fast?

> Process the data:
> Where? How much computing? Which AI/ML libraries?

[ New Decisions: Sampling data sources; compute/memory allocation; ML parameter selection ]

[ New Metrics: Accuracy of inferences; number of successful Al tasks; utility of information, etc. ]

’ New Trade-offs: Accuracy vs. lifetime vs. volume of tasks vs. resources’ consumption ]

> Energy, in particular, is the common currency all these operations spend!

» Opportunity: Softwarization of networks, convergence of comp. & comms.
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Optimizing vBS

> The flexibility and agility of softwarization comes at a cost.

> A plenitude of configuration options that is difficult to discern and optimize;
> which may lead to unpredictable resource consumption, e.g., in terms of energy.

> Two important problems:

1. How to select transmission power, MCS and airtime for each vBS in order to maximize
the served traffic (throughput) and power consumption.

2. How to select transmission power, MCS and airtime for each vBS in order to maximize
the throughput subject to a hard power consumption threshold.

> We need to answer two key questions:

1. What is the performance and energy consumption profile of vBSs?

2. How can we optimize their operation using an adaptive and platform-oblivious approach?

J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Pérez, G. losifidis: Orchestrating Energy-Efficient vVRANs:
Bayesian Learning and Experimental Results, IEEE Trans. on Mobile Computing, 2022.
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Experimental Evaluation

> A testbed with a vBS, user equipement (UE), and a digital power meter.
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2 Ettus Research USRP B210 (radio part) and 2 Intel NUCs with CPU i7-8559U (BBU).
srsLTE suite to implement the BBU for both the eNB and UE

Select the 10 MHz bandwidth.

Digital power meter GW-Instek GPM-8213 along with the adapter GPM-001.

Integrated O-RAN E2 interface and the ability to change vBS configurations on-the-fly.
Generate the traffic load for both DL and UL using mgen.
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Experiments (1)

» BBU/CPU cost & Impact of Platform
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Experiments (2)
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> Impact of SNR and MCS
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Experiments (3)

» Configuration Options and Impact of Scheduler
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Experiments (4)

> Coupling of UL and DL
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Conclusions from Experiments

> Characterizing the vBS power cost is intricate as it depends on traffic, SNR, MCS
and airtime.

» There are many DL and UL configurations and some of them present non-linear
and non-monotonic relations with power and throughput.

> The power consumption depends on the BBU platform and radio scheduler.
> This hinders the derivation of general consumption models.

> We propose the use of online learning to devise goal-driven configuration policies.
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Problem Formulation

> Basic parameters and variables of the model.

> Context for downlink: w? := [e, 8 d]

> E}ﬂ and ?:,d/ are the mean and variance of the DL CQI across all users in previous period.
> Context for uplink: w?' := [¢¥, &, d¥|
> Actions for downlink: x&' := [p®, m¥, a¥]

> p;ﬂ is a transmission power control (TPC) policy for the max allowed vBS Tx power;

> md is the highest MCS eligible (DL MCS policy);

> a € A% is the maximum vBS transmission airtime (DL airtime policy).

> Actions for uplinkk: x := [m¥, a¥/]

> Reward:

dl X RUI uI7 Xu/
r(we, Xt) = log (1 + 7(2,"1, ‘) +log [ 1+ 7@;‘” t)
t t

where R¥, R is the achieved throughput in DL and UL, resp.

losifidis, TU Delft Network Management for Analytics



Case 1: Balancing Performance & Cost

> The power supply is scarce or the operator needs to reduce OpEx.

> Pareto optimization via scalarization:

u(w;, X[) = f(w,, X() —0- B(P(wt7 X())7

> Goal: minimize (contextual) regret:

T

Ar =3 (o ulen )~ or )

t=1

» By finding a sequence of configurations {xt},T:1 such that:

lim Rr/T=0
T—oo

> Key observation: outcomes of different configurations are correlated.
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Case 2: Hard Power Budget

> The vBS operates under a power budget Pmax, €.9., when PoE operation.

» Find for maximum throughput configuration meeting the budget. Using new regret:

;
RS = ( max  r(ws, X’ frw,X)
T ; e s (we, x") = r(wt, Xt)

where in this case the decisions are selected from set of safe configurations:

Si(wr) = {x cx ] P(wr, x) < Pmax}.

» By finding a sequence of configurations {xt},T:1 such that:

lim R$/T=0
T— o0
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Solution: Bayesian Online Learning

» Use Gaussian Processes (GPs)

P Context - action pair: z € C = Q x X
> Obtain noisy performance - cost observations {u;} for each {z}.
P The posterior distribution of the objective function follows a GP with
mean ur(z) = kr(2) T (Kr +¢*17) 'yr
variance kr(z,2') = k(z,2') — kr(2) T (Kt + ¢®17) " 'kr(2)
where kr(z)=[k(z1,2), ..., k(zr,2)]", Kr(2) is the kernel matrix [k(z, z,)]Z,Z/EZT’

and 17 is the T-dimension identity matrix.

» With GPs we can estimate the distribution of unobserved values z € Z;

> Thus, to gradually learn the function that we wish to optimize.

»> How do we leverage this information? Using the acquisition function:

Xt = afg;‘?;lttq(whx) + v/ Bke_1 (wt, X)
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Solution: Bayesian Online Learning

SSSoo.-—~—-_ objective fn (f(-))
observation (x) ject 1o

¥ acquisition max

acquisition function (u(-))

new observation (x,)

posterior mean (u(+))

posterior uncertainty
(u(-) £o()) v
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BP-vRAN Algorithm

Algorithm 1 BP-vRAN: Performance and cost balancing

1: Inputs: Control Space X, kernel k, 3

2: Initialize: yo =0, Zo = 0

Bfort=1,..., T do

4: Observe the context wy

50 @y =argmax,cy fpi—1(wt, ) + v/ Bror_1(ws, x)

6:  Measure R (wi', zf"), R (wit, zi') and P;(w;, ) at the
end of the decision period t

7 Compute ut(we, x¢) using (1), (2) and (3)

8:  Update Z: + Zi—1 U [we, x4]

9:  Update y¢ < y¢—1 U ug(we, o)

10:  Perform Bayesian update to obtain p; and o

11: end for

> The algorithm ensures a probabilistic bound for regret:

P(Rr<VCiTBrr) 21—«
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Safe BP-vRAN Algorithm

Algorithm 2 SBP-vRAN: Safe online optimization

1: Inputs: Control Space X, Initial safe set So, kernel &, 3, Puax
2: Initialize: y§ =0, y§ =0, Zo =10

3:fort=1,...,7 do

4:  Observe the context w;

Si=8SoU{r € X | pi_1(we,x) + Brof—1(wi, ) < Prax}
Ty = argmax, g, pe—1(we, ) + VBeor—1(we, )

Measure Ri'(wi', 2f'), Ry (wi, #") and Py(we, =) at the
end of the decision period ¢

8:  Compute 7+ (wy, z¢) using (1)

9:  Update Z; <+ Z;—1 U [wy, x4

10:  Update y/ <y, Urs(wr,z:)

11:  Update yi < yi_1 U Pi(we, xt)

12:  Perform Bayesian update to obtain u{, atf., s and of

13: end for

»> We need an additional GP for assessing the safety of the constraint.
St = {X ex ‘ pi_q(wt, X) 4+ Brof_1(wt, x) < Pmax}~
> The configuration is selected using the CGP-UCB policy subject to the safe set:

X; = argmax i1 (@t X) + V/Brof_y (wr, X),
XESt

losifidis, TU Delft Network Management for Analytics



Experimental Evaluation (Convergence)

BP-vRAN

SBP-vRAN
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Experimental Evaluation (Convergence)
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Conclusions

> Presented an in-depth experimental study of the energy behavior of vBSs.

> Found a complex relationship between performance, power cost and vBS config.
> This complexity can only be tamed with data-driven machine-learning solutions.
> We have proposed an online learning framework to achieve two goals:

P Balance performance and power cost;
P> Maximize performance subject to power constraints vBS, e.g., PoE.

v

Theoretical guarantees; high data-efficiency and convergence speed.

v

Real-data evaluation verified convergence and efficacy in practice.

v

Code and datasets online: https://jaayala.github.io/
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Edge Analytics

> How to orchestrate the network in order to support real-time video analytics?

» E.g., capture and process video frames in real time using MEC.
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Edge Analytics

> How to orchestrate the network in order to support real-time video analytics?

» E.g., capture and process video frames in real time using MEC.

> Challenges:

> Multiple criteria: fast and accurate inferences; or energy-aware inferences;

> Multiple decisions: video frame quality; network control; Al pipeline configuration;
> Need to jointly optimize all these decisions;
>

Performance depends on equipment and on the actual processed data.
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Edge Analytics over WiFi

> We study a basic scenario — key component of different applications.

Capture Image Decode Image

Neural Network
(o || -
«“» j

Display Results [¢———— Collect Results
802.11ac

Mobile Device Access Point Edge Server
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Edge Analytics over WiFi

> We study a basic scenario — key component of different applications.

Capture Image Decode Image
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Mobile Device Access Point Edge Server

> We have built an exemplary system:
> An Android app captures and sends images to server for object recognition using YOLO;

> Bounding boxes of recognized objects returned to the mobile; process repeats;
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Edge Analytics over WiFi

> We study a basic scenario — key component of different applications.

Decode Image

Neural Network
Processing ~
Display Results [¢———— Collect Results
802.11ac

Mobile Device Access Point Edge Server

Capture Image

[ |

> We have built an exemplary system:

> An Android app captures and sends images to server for object recognition using YOLO;
> Bounding boxes of recognized objects returned to the mobile; process repeats;

> Image encoding rate (at the device) and YOLO NN input-layer size (at the server) affect
both the accuracy and latency.

A. Galanopoulos, J. Ayala, D. Leith, G. losifidis, Auto-ML for Video Analytics with Edge Computing, IEEE
INFOCOM 2021.
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Edge Analytics over vBS

> We also study the case where the network is cellular.

» How to jointly configure the service (frame features); vBS (MCS, Power); and edge
server (GPU power)?

SMO Framework
EdgeBol

H—i

O-RAN Non-RT RIC Edge
Orchestrator

User

application

(e.g., video
(Pollcy senllce) (Dala colleczor)

Custom
interface

XApp XApp "
Service

O-RAN Near-RT RIC controller

0-eNB, O-gNB

3GPP radio interface
3GPP backhaul interface
(NR, LTE) (51, N3)

J. Ayala, A. Saavedra, X. Costa-Perez, G losifidis, EdgeBOL: Automating Energy-savings for Mobile Edge Al,
ACM CoNEXT, 2021.
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Edge Analytics over vBS

> Trade offs between service delay and service accuracy.

5
‘% 0.6 Image
2 B T
(] Higher-res images; res. (%)
g 044 higher tx delay 100
% ° 75
® 0o Lower-res images, 50
= U lower precision

[ ]
g 25
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Service delay (ms)

> Outline of setup:

P Service delay: image proc. at UE, transmission; GPU processing; return of labels.
> Mean Average Precision (mAP): typical metric used in object recognition problems.
> Server power consumption (mainly GPU).

> BS power consumption *(BBU processing).
>

Control policies:

> Average image encoding of every image generated; enforced by the service.
» Radio airtime and MCS.
> GPU power limit that adapts the GPU speed.
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Thank you!
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