
Spectral Methods for Graph Embedding

Thomas Bonald
Joint work with Nathan de Lara & Quentin Lutz

SystemX Webinar
September 2020

Graph data

Graphs
Social networks
Web graphs
Knowledge graphs

Bipartite graphs
User ↔ Product
Actor ↔ Movie
Deputy ↔ Bill
Document ↔ Word
Patient ↔ Med

(Bi-)adjacency matrix

Graphs
Social networks
Web graphs
Knowledge graphs

Bipartite graphs
User ↔ Product
Actor ↔ Movie
Deputy ↔ Bill
Document ↔ Word
Patient ↔ Med

A=

1 1

1
1

1
1

B =
 1 1 1
1 1
1 1

Sparse data

Graph #nodes #edges Density
Openflights 2,939 30,500 ≈ 10−3

WordNet 146k 657k ≈ 10−5

Wikipedia 12M 378M ≈ 10−6

Twitter 42M 1.5G ≈ 10−6

Friendster 68M 2.5G ≈ 10−7

Bipartite graph #nodes #edges Density
Message-Word 11k; 56k 1M ≈ 10−3

Movie-Actor 88k; 45k 304k ≈ 10−4

User-Product 21M; 10M 83M ≈ 10−7

Graph analysis

Key tasks
Clustering
Hierarchy
Ranking
Classification
Embedding

For massive graphs (millions of nodes)

Outline

Part I - Graph embedding
1. Spectral methods
2. Key properties
3. Experiments

Part II - Graph software
1. Overview
2. Demo scikit

network

Graph embedding

Idea: Representation of nodes as vectors in low dimension

Motivation
Dimension reduction
Metric learning
Link prediction
Anomaly detection

→

Embedding methods

Spectral methods
Laplacian matrix Belkin & Niyogi 2001
. von Luxburg 2007

Random walks
Node2Vec Grover & Leskovec 2016

Neural nets
Auto-encoders Kipf & Welling 2016
Deep Nets Wang et. al. 2017
Ranking Nets Lelarge 2018
Adversarial Nets Pan et. al. 2019

Laplacian matrix

Let L=D−A with D the diagonal matrix of degrees

A discrete Laplace operator

dT

dt
=−LT

(heat equation)

A mechanical system

Nodes = particles, edges = (attractive) springs
Put nodes on a line at positions x1, . . . ,xn ∈R

→

E = 1
2

∑
i<j

Aij(xi −xj)
2 = 1

2
xTLx

(potential energy)

A harmonic oscillator

Nodes = particles, edges = (attractive) springs
Let the system evolve, starting from positions x1, . . . ,xn ∈R

→

∀i , ẍi =
∑
i<j

Aij(xj −xi) ⇐⇒ ẍ=−Lx

Eigenvectors of L → eigenmodes
Eigenvalues of L → levels of energy

An optimization problem

Find X1, . . . ,Xn ∈Rk such that

min
X

∑
i ,j
Aij ||Xi −Xj ||2

→

An optimization problem

Find X1, . . . ,Xn ∈Rk such that

min
X :XT 1=0,XTX=I

∑
i ,j
Aij ||Xi −Xj ||2

→

An optimization problem

Find X1, . . . ,Xn ∈Rk such that

min
X :XT 1=0,XTX=I

∑
i ,j
Aij ||Xi −Xj ||2 ⇒ min

X :XT 1=0,XTX=I
tr(XTLX)

→

Spectral embedding
Given by the first eigenvectors of the Laplacian

min
X :XT 1=0,XTX=I

tr(XTLX) ⇒ LX =XΛ

Physical interpretation:
eigenvectors = eigenmodes, eigenvalues = levels of energy

→

Transition matrix

Let P =D−1A be the transition matrix of the random walk

A stochastic matrix

T ←PT

(discrete-time diffusion)

A harmonic oscillator

Nodes = particles of masses d1, . . . ,dn, edges = springs
Let the system evolve, starting from positions x1, . . . ,xn ∈R

→

∀i , D ẍi =
∑
i<j

Aij(xj −xi) ⇐⇒ D ẍ=−Lx

Eigenvectors of P → eigenmodes
1− eigenvalues of P → levels of energy

Back to the optimization problem

Find X1, . . . ,Xn ∈Rk such that

min
X :XTD1=0,XTDX=I

∑
i ,j
Aij ||Xi−Xj ||2 ⇒ min

X :XTD1=0,XTDX=I
tr(XTLX)

→

Spectral embedding
Given by the top eigenvectors of the transition matrix

min
X :XTD1=0,XTDX=I

tr(XTLX) ⇒ PX =X (I −Λ)

Physical interpretation:
eigenvectors = eigenmodes, 1 - eigenvalues = levels of energy

→

Barycenter property

Each node is located at the barycenter of its neighbors
in the embedding space (up to some scaling):

PX =X (I −Λ) ⇒ X = (PX)(I −Λ)−1

→

Variants

Regularization

A → A+γ11T (or γddT)

Zhang & Rohe 2018
de Lara & B 2020

Scaling

X → XΛ−α

Normalization

X1, . . . ,Xn → X1

||X1||
, . . . ,

Xn

||Xn||

Case of bipartite graphs

Co-embedding of nodes in the same space

→

Idea: See the bipartite graph as a standard graph,
with adjacency matrix

A=
[
0 B

BT 0

]

Case of directed graphs

Idea: See the directed graph as a bipartite graph,
with biadjacency matrix A

→

↓

Algorithms

Need to compute the top eigenvectors of a symmetric matrix M

Lanczos’ algorithm
Power iteration
Lanczos 1950

Halko’s algorithm
Random projection
Power iteration
QR decomposition
Halko 2009

v ← Mv

||Mv ||

(1) M ≈QQTM with QTQ = I

(2) v ← QTMQv

||QTMQv ||

Back to regularization

A → A+γ11T

The adjacency matrix becomes dense...
but with a nice sparse + low rank structure:

(A+γ11T)v =Av +γ(1T v)1

Experiments

Show the impact of regularization, scaling, normalization

Openflights
Graph of flights (weighted)
3,097 nodes
36,386 edges

WikiVitals
Graph of links (directed)
10,012 nodes
792,091 edges
10 labels (categories)

Paris (CDG) Tokyo (HND)

Graph theory Artificial intelligence

See https://netset.telecom-paris.fr

https://netset.telecom-paris.fr

Openflights

Algorithm: Spectral embedding + K -means (10 clusters)

Parameters
Matrix P =D−1A
Dimension k = 10
Regularization 1%
Scaling α= 1

2
Normalization

Openflights: impact of the Laplacian

Transition matrix
P =D−1A

Laplacian matrix
L=D−A

Openflights: impact of regularization

Regularization 1%

No regularization

Openflights: impact of scaling

Scaling α= 1
2

No scaling

Openflights: impact of normalization

Normalization
(unit sphere)

No normalization

WikiVitals

Algorithm: Spectral embedding + K -means (10 clusters)

Ground-truth labels: Arts, Biology and health sciences, Everyday
life, Geography, History, Mathematics, People, Philosophy and
religion, Physical sciences, Society and social sciences, Technology

Parameters
Matrix P =D−1A
Dimension k = 10
Regularization 1%
Scaling α= 1

2
Normalization

Metrics
Adjusted Rand Index (ARI)
Adjusted Mutual Info (AMI)

WikiVitals: results

ARI AMI
Transition matrix 0.30 0.42
Laplacian matrix 0.14 0.28
No regularization 0.25 0.36
No scaling 0.21 0.34
No normalization 0.19 0.37

(reference embedding in 2D)

Summary

Spectral methods for graph embedding
Ï Scalable (through random projection)
Ï Explainable (through physics)
Ï Applicable to bipartite and directed graphs
Ï Sensitive (regularization, scaling, normalization)

→

Outline

Part I - Graph embedding
1. Spectral methods
2. Key properties
3. Experiments

Part II - Graph software
1. Overview
2. Demo scikit

network

Scikit-network

A Python library for graph analysis
Ï easy to install pip install scikit-network
Ï easy to use algorithm.fit(data)
Ï well documented
Ï fast and memory-efficient

Relies on NumPy and SciPy only
BSD license

scikit
network

Data format

Graph = adjacency matrix or biadjacency matrix
Represented in the CSR (Compressed Sparse Row) format of SciPy

A=

1 1

1
1

1
1

Fast matrix-vector products

Cython

C extension for Python

Native parallelism

Used to speed-up iterative algorithms
(e.g., Louvain)

Transparent to the user

Other Python libraries for graphs

NetworkX
Python only

iGraph
Core in C/C++

graph-tool
Core in C/C++

NetworkX iGraph graph-tool scikit-network
Data 3 7 3 3

Topology 3 3 3 3

Clustering 3 3 7 3

Hierarchy 7 3 3 3

Ranking 3 3 3 3

Classification 3 7 7 3

Embedding 3 7 3 3

Visualization 3 3 3 3

3 Available
3 Partially available or not scalable

7 Not available

Performance

Test on the Orkut graph (3M nodes, 117M edges)

RAM usage

NetworkX iGraph graph-tool scikit-network
� 18G 10G 1G

Running times

iGraph graph-tool scikit-network
Louvain 33 min 7 2 min
PageRank 3 min 56 s 45 s 48 s
HITS 1 min 20 s 2 min 24 s 1 min 49 s

