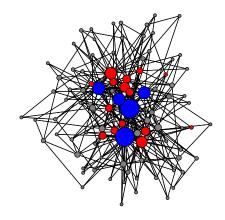
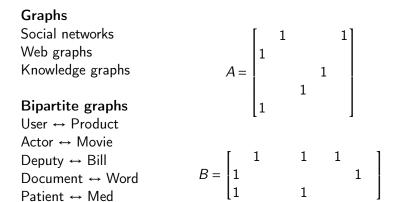


Spectral Methods for Graph Embedding


Thomas Bonald Joint work with Nathan de Lara & Quentin Lutz

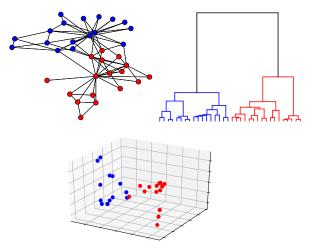
SystemX Webinar September 2020


Graph data

Graphs Social networks Web graphs Knowledge graphs

Bipartite graphs

(Bi-)adjacency matrix


Sparse data

Graph	#nodes	#edges	Density
Openflights	2,939	30,500	$pprox 10^{-3}$
WordNet	146k	657k	$pprox 10^{-5}$
Wikipedia	12M	378M	$pprox 10^{-6}$
Twitter	42M	1.5G	$pprox 10^{-6}$
Friendster	68M	2.5G	$pprox 10^{-7}$

Bipartite graph	#nodes	#edges	Density
Message-Word	11k; 56k	1M	$pprox 10^{-3}$
Movie-Actor	88k; 45k	304k	$pprox 10^{-4}$
User-Product	21M; 10M	83M	$pprox 10^{-7}$

Graph analysis

Key tasks Clustering Hierarchy Ranking Classification Embedding

For massive graphs (millions of nodes)

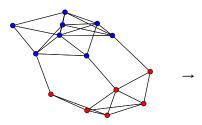
Outline

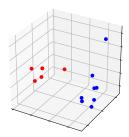
Part I - Graph embedding

- 1. Spectral methods
- 2. Key properties
- 3. Experiments

Part II - Graph software

- 1. Overview
- 2. Demo




Graph embedding

Idea: Representation of nodes as vectors in low dimension

Motivation

Dimension reduction Metric learning Link prediction Anomaly detection

Embedding methods

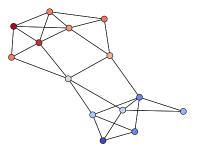
Spectral methods Laplacian matrix

Random walks Node2Vec

Neural nets Auto-encoders Deep Nets Ranking Nets Adversarial Nets Belkin & Niyogi 2001 von Luxburg 2007

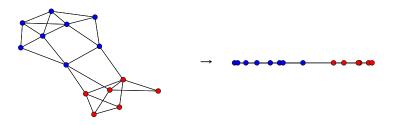
Grover & Leskovec 2016

Kipf & Welling 2016 Wang et. al. 2017 Lelarge 2018 Pan et. al. 2019


Laplacian matrix

Let L = D - A with D the diagonal matrix of **degrees**

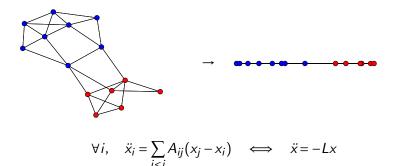
A discrete Laplace operator



(heat equation)

A mechanical system

Nodes = particles, edges = (attractive) springs Put nodes on a line at positions $x_1, ..., x_n \in \mathbb{R}$

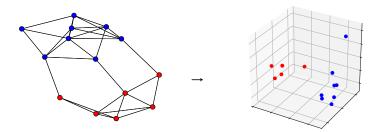


$$E = \frac{1}{2} \sum_{i < j} A_{ij} (x_i - x_j)^2 = \frac{1}{2} x^T L x$$

(potential energy)

A harmonic oscillator

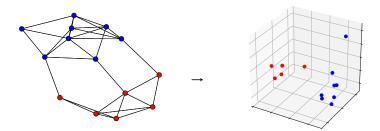
Nodes = particles, edges = (attractive) springs Let the system evolve, starting from positions $x_1, ..., x_n \in \mathbb{R}$

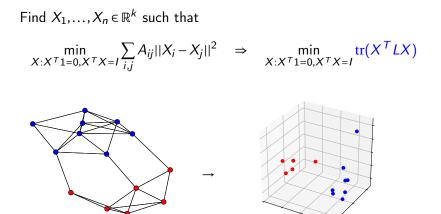


Eigenvectors of $L \rightarrow$ eigenmodes Eigenvalues of $L \rightarrow$ levels of energy

An optimization problem

Find $X_1, \ldots, X_n \in \mathbb{R}^k$ such that

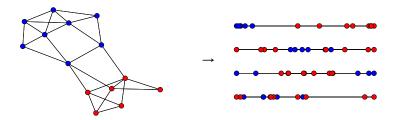

$$\min_{X} \sum_{i,j} A_{ij} ||X_i - X_j||^2$$


An optimization problem

Find $X_1, \ldots, X_n \in \mathbb{R}^k$ such that

$$\min_{X:X^{T}1=0,X^{T}X=I}\sum_{i,j}A_{ij}||X_{i}-X_{j}||^{2}$$

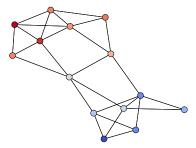
An optimization problem


Spectral embedding

Given by the first eigenvectors of the Laplacian

$$\min_{X:X^T 1=0, X^T X=I} \operatorname{tr}(X^T L X) \quad \Rightarrow \quad L X = X \Lambda$$

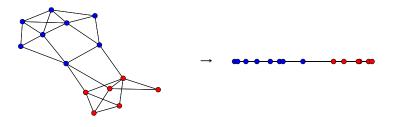
Physical interpretation:


eigenvectors = eigenmodes, eigenvalues = levels of energy

Transition matrix

Let $P = D^{-1}A$ be the transition matrix of the **random walk**

A stochastic matrix

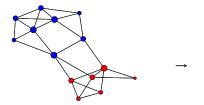


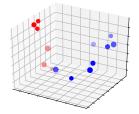
 $T \leftarrow PT$

(discrete-time diffusion)

A harmonic oscillator

Nodes = particles of masses $d_1, ..., d_n$, edges = springs Let the system evolve, starting from positions $x_1, ..., x_n \in \mathbb{R}$

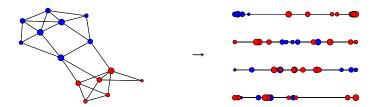

$$\forall i, \quad D\ddot{x}_i = \sum_{i < j} A_{ij} (x_j - x_i) \quad \Longleftrightarrow \quad D\ddot{x} = -Lx$$


Eigenvectors of $P \rightarrow$ eigenmodes 1– eigenvalues of $P \rightarrow$ levels of energy

Back to the optimization problem

Find
$$X_1, \dots, X_n \in \mathbb{R}^n$$
 such that

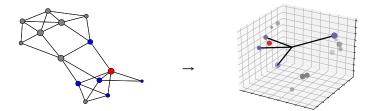
$$\min_{X:X^T D 1=0, X^T D X=I} \sum_{i,j} A_{ij} ||X_i - X_j||^2 \implies \min_{X:X^T D 1=0, X^T D X=I} \operatorname{tr}(X^T L X)$$


Spectral embedding

Given by the top eigenvectors of the transition matrix

$$\min_{X:X^{\mathsf{T}}D1=0,X^{\mathsf{T}}DX=I} \operatorname{tr}(X^{\mathsf{T}}LX) \quad \Rightarrow \quad PX = X(I-\Lambda)$$

Physical interpretation:


eigenvectors = eigenmodes, 1 - eigenvalues = levels of energy

Barycenter property

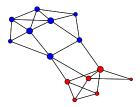
Each node is located at the **barycenter of its neighbors** in the embedding space (up to some scaling):

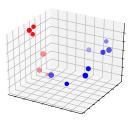
$$PX = X(I - \Lambda) \implies X = (PX)(I - \Lambda)^{-1}$$

Variants

Regularization

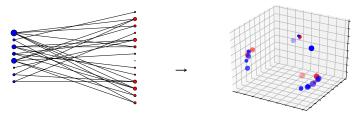
$$A \rightarrow A + \gamma 11^T \text{ (or } \gamma dd^T\text{)}$$


Zhang & Rohe 2018 de Lara & B 2020


Scaling

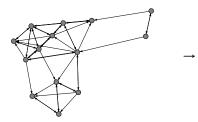
$$X \rightarrow X \Lambda^{-\alpha}$$

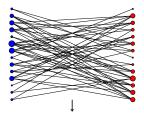
Normalization

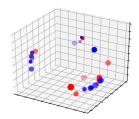

$$X_1, \dots, X_n \rightarrow \frac{X_1}{||X_1||}, \dots, \frac{X_n}{||X_n||}$$

Case of bipartite graphs

Co-embedding of nodes in the same space



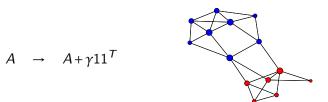

Idea: See the bipartite graph as a standard graph, with adjacency matrix


$$A = \begin{bmatrix} 0 & B \\ B^T & 0 \end{bmatrix}$$

Case of directed graphs

Idea: See the directed graph as a bipartite graph, with biadjacency matrix A

Algorithms


Need to compute the top eigenvectors of a symmetric matrix M

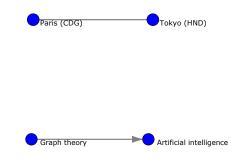
Lanczos' algorithm Power iteration Lanczos 1950 $v \leftarrow \frac{M_v}{||M_v||}$

Halko's algorithm Random projection Power iteration QR decomposition Halko 2009

(1)
$$M \approx QQ^T M$$
 with $Q^T Q = I$
(2) $v \leftarrow \frac{Q^T M Q v}{||Q^T M Q v||}$

Back to regularization

The adjacency matrix becomes **dense**... but with a nice **sparse** + **low rank** structure:


$$(A + \gamma \mathbf{1}\mathbf{1}^T)v = Av + \gamma(\mathbf{1}^Tv)\mathbf{1}$$

Experiments

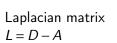
Show the impact of regularization, scaling, normalization

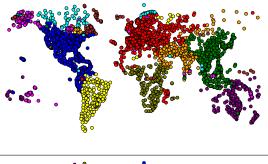
Openflights Graph of flights (weighted) 3,097 nodes 36,386 edges

WikiVitals Graph of links (directed) 10,012 nodes 792,091 edges 10 labels (categories)

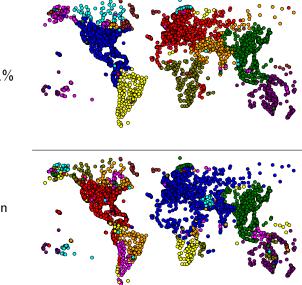
See https://netset.telecom-paris.fr

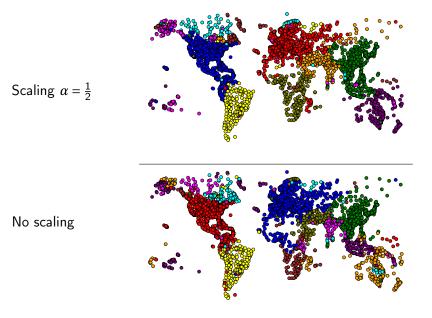
Openflights


Algorithm: Spectral embedding + K-means (10 clusters)


Parameters Matrix $P = D^{-1}A$ Dimension k = 10Regularization 1% Scaling $\alpha = \frac{1}{2}$ Normalization

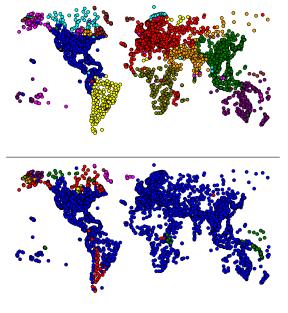
Openflights: impact of the Laplacian


Transition matrix $P = D^{-1}A$


Openflights: impact of regularization

Regularization 1%

No regularization

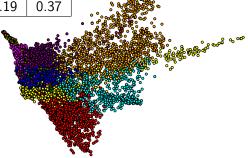

Openflights: impact of scaling

Openflights: impact of normalization

Normalization (unit sphere)

WikiVitals

Algorithm: Spectral embedding + K-means (10 clusters)

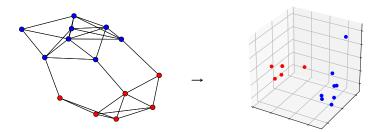

Ground-truth labels: Arts, Biology and health sciences, Everyday life, Geography, History, Mathematics, People, Philosophy and religion, Physical sciences, Society and social sciences, Technology

Parameters Matrix $P = D^{-1}A$ Dimension k = 10Regularization 1% Scaling $\alpha = \frac{1}{2}$ Normalization

Metrics Adjusted Rand Index (ARI) Adjusted Mutual Info (AMI)

WikiVitals: results

	ARI	AMI
Transition matrix	0.30	0.42
Laplacian matrix	0.14	0.28
No regularization	0.25	0.36
No scaling	0.21	0.34
No normalization	0.19	0.37



(reference embedding in 2D)

Summary

Spectral methods for graph embedding

- Scalable (through random projection)
- Explainable (through physics)
- Applicable to bipartite and directed graphs
- Sensitive (regularization, scaling, normalization)

Outline

Part I - Graph embedding

- 1. Spectral methods
- 2. Key properties
- 3. Experiments

Part II - Graph software

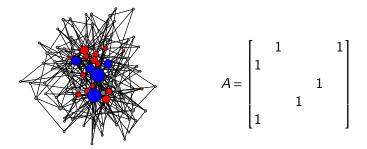
- 1. Overview
- 2. Demo

Scikit-network

A Python library for graph analysis

easy to install pip install scikit-network

algorithm.fit(data)


- easy to use
- well documented
- fast and memory-efficient

Relies on NumPy and SciPy only BSD license

Data format

 $\label{eq:Graph} \begin{array}{l} \mbox{Graph} = \mbox{adjacency} \mbox{ matrix} \\ \mbox{Represented in the } \mbox{CSR} \mbox{ (Compressed Sparse Row) format of SciPy} \end{array}$

Fast matrix-vector products

C extension for Python

Native parallelism

Used to speed-up **iterative** algorithms (e.g., Louvain)

Transparent to the user

Other Python libraries for graphs

NetworkX		iGraph		ph-tool
Python only	/ Core	in C/C+	+ Core i	n C/C++
	NetworkX	iGraph	graph-tool	scikit-network
Data	\checkmark	×	\checkmark	✓
Topology	1	1	1	1
Clustering	\checkmark	\checkmark	×	✓
Hierarchy	×	\checkmark	\checkmark	✓
Ranking	\checkmark	1	1	✓
Classification	\checkmark	×	×	✓
Embedding	\checkmark	×	\checkmark	✓
Visualization	\checkmark	\checkmark	\checkmark	 Image: A second s
✓ Available				

✓ Partially available or not scalable

X Not available

Performance

Test on the Orkut graph (3M nodes, 117M edges)

RAM usage

NetworkX	iGraph	graph-tool	scikit-network
	18G	10G	1G

Running times

	iGraph	graph-tool	scikit-network
Louvain		×	2 min
PageRank	3 min 56 s 1 min 20 s	45 s	48 s
HITS	1 min 20 s	2 min 24 s	1 min 49 s