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Problem formulation
Deterministic optimization problem:

min c(x) s.t. gj(x) ≥ 0, j ∈ J , x ∈ X0,

x ∈ Rn . . . decision vector
X0 ⊂ Rn . . . deterministic constraints
J . . . index set for constraints gj

Stochastic optimization problem:

minE{c(x , ξ)} s.t. G(x) = E{gj(x ; ξ)} ≥ 0, j ∈ J , x ∈ X0,

ξ ∈ Rs . . . random vector

Constraints with a high variability: Chance constraints

min c(x) s.t. G(x) = P{gj(x ; ξ) ≥ 0, } ≥ 1− ε, j ∈ J , x ∈ X0,

1− ε . . . fixed probability Abdel Lisser On chance constrained optimization
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Portfolio optimization -A. Shapiro et al.-

Objective: Invest a capital in such way that the expected value is
maximized under the condition that the chance of losing no more
that a given a fraction η is at least p.

Variables and parameters
x ∈ Rn . . . fraction of a capital invested in n instruments
ξ1, . . . , ξn . . . random return rates in the next period
p ∈ (0, 1) . . . fixed probability
η = −0.1 . . . protection against losses larger than 10%
P{
∑n

i=1 ξixi ≥ η} ≥ p . . . Value-at-Risk (V@R) constraint.

max
n∑

i=1
E[ξi ]xi s.t. P{

n∑
i=1

ξixi ≥ η} ≥ p,
n∑

i=1
xi = 1, x ≥ 0.
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Problem formulation

min c(x) s.t. G(x) = P{gj(x ; ξ) ≥ 0, j ∈ J } ≥ 1− ε, x ∈ X0,

x ∈ Rn . . . decision vector
X0 ⊂ Rn . . . deterministic constraints
ξ ∈ Rs . . . random vector
1− ε . . . fixed probability
J . . . index set for constraints gj

Important special cases:

1 random right-hand side only (separable case, linear or non-linear)

G(x) = P{gj(x) ≥ ξ, j ∈ J } ≥ 1− ε,

i. e. gj(x ; ξ) = gj(x)− ξ
2 random constraint matrix Ξ (bilinear model)

G(x) = P{Ξx ≤ b}

(b constant vector)
3 ξ of discrete distribution (p-efficient points)
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Problem formulation
General chance constrained optimization problem

min c(x) s.t. G(x) = P{gk(x ; ξ) ≥ 0, k ∈ K} ≥ p, x ∈ X0

For simplicity, we assume

X0 = Rn c(x) = cT x K = {1, . . . ,K}.

Very classical result

Proposition 1
The feasible set is convex ⇔ G(x) is quasi-concave (on X0).

We will concentrate in two important special cases

1 nonlinear constraints with random right-hand side
2 linear constraints with random coefficient matrix
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Problem formulation
Constraints with random right hand side

Constraints with random right hand side (separable model)

min cT x s.t. G(x) = P{gk(x) ≥ ξk , k ∈ K} ≥ p

i. e.

gk(x ; ξ) = gk(x)− ξk
G(x) = P{gk(x) ≥ ξ, k ∈ K} ≥ p,

Denote
M(p) := {x | P{gk(x) ≥ ξk , k ∈ K} ≥ p}

. . . set of feasible solutions
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Problem formulation
Constraints with linear random matrix

Constraints with linear random matrix (bilinear model)

min cT x s.t. G(x) = P{Ξx ≤ h} ≥ p

i. e.

ξ = (Ξ1
T , . . . ,Ξk

T )
gk(x ; ξ) = hk − Ξx

G(x) = P{Ξkx ≤ hk , k ∈ K} ≥ p,

Denote
X (p) := {x | P{Ξx ≤ h} ≥ p}

. . . set of feasible solutions.
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Problem formulation
Constraints with random right hand side

Constraints with random right hand side (separable model)

min cT x s.t. G(x) = P{g(x) ≥ ξ, } ≥ p

i. e.

g(x ; ξ) = g(x)− ξ
G(x) = P{g(x) ≥ ξ, } ≥ p,

. . . According to the distribution function Fξ(z) := P(ξ ≤ z), this constraint
can be written as

Fξ(z) := {Fξ(g(x)) ≥ p}

. . . If ξ has a density function fξ, then.

Fξ(z) :=
∫ z1

−∞
. . .

∫ zs

−∞
fξ(x)dxs . . . dx1
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Problem formulation
Joint vs. individual chance constraints

Individual chance constraints

G(x) = P{gk(x) ≥ ξk , } ≥ p, k ∈ K

. . . easy to get a deterministic formulation

P{gk(x) ≥ ξk , } ≥ p, k ∈ K ⇐⇒ gk(x) ≥ qk(p)

. . . qk(p) is the p−quantile of ξk

Joint chance constraints

G(x) = P{gk(x) ≥ ξk , k ∈ K} ≥ p

. . . more difficult to deal with than individual chance constraints
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Chance constraints
Definition and basic properties

Probability function structural properties

G(x) := P{g(x , ξ) ≥ 0}

and the induced feasible set

X (p) := {x | P{Ξx ≤ h} ≥ p}

. . . are important for solving chance constrained problems.

Proposition 2 (Upper semicontinuity, closedness)
if gk are usc, the G is usc. As a consequence, X (p) is closed.
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Chance constraints
Definition and basic properties

Let ξ be an k-dimensional random vector with distribution function Fξ

Proposition 3
if ξ has a density fξ, i.e., Fξ(z) =

∫ z
−∞ fξ(x)dx, then Fξ is continuous.

Theorem 4 (Wang 1985, Romisch/Schultz 1993)
If ξ has a density fξ, then Fξ is Lipschitz continuous if and only if all
marginal densities fξ i are essentially bounded.

Theorem 5 (Henrion/Romisch 2010)

If ξ has a density fξ such that f
−1
s

ξ is convex, then Fξ is Lipschitz
continuous.

. . . Assumption satisfied by several multivariate distributions, e.g., Gaussian, t,
Gamma, lognormal
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Basic theorems
Continuity and differentiability

Differentiability

Proposition 6
Let z ∈ Rk be given. If all one-dimensional functions

ϕ
(i)(t) :=

∫ z1

−∞

. . .

∫ zi−1

−∞

∫ zi+1

−∞

. . .

∫ zk

−∞

fξ(u1, . . . , ui−1, t, ui+1, . . . , uk )du1, . . . , dui−1, dui+1, . . . , duk

are continuous, the partial derivatives of Fξ exist and it holds that

∂Fξ
∂zi

(z) = ϕ(i)(zi)
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Convexity issues
Individual chance constraints

. . . Linear chance constraints with random right-hand side

P{g(x) ≥ ξ} ≥ p ⇐⇒ Fξ(g(x)) ≥ p

Question: Is Fξ ◦ g concave ? Convex optimization methods

It suffices:

1 components gi concave . . . g is a linear mapping
2 Fξ increasing . . . obvious for distribution function
3 Fξ concave . . . never for distribution functions
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Chance constraints
Quasiconcave functions

A real valued function f defined on a convex set A ⊂ Rm is called
quasiconcave if ∀(x , y) ∈ A, and 0 < λ < 1, we have

f (λx + (1− λ)y) ≥ min[f (x), f (y)]

A nonnegative function f defined on a convex set A ⊂ Rm is called
logarithmically concave if ∀(x , y) ∈ A, and 0 < λ < 1, we have

f (λx + (1− λ)y) ≥ [f (x)]λ[f (y)]1−λ

A nonnegative function f defined on a convex set A ⊂ Rm is called
r-concave if ∀(x , y) ∈ A s.t. f (x) > 0, f (y) > 0, and 0 < λ < 1,
we have

f (λx + (1− λ)y) ≥ [λf r (x) + (1− λ)f r (y)] 1
r
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Generalized concavity properties
r -concave functions

Definition 7
f (·) is r -concave iif for any x , y such that f (x) > 0, f (y) > 0 and
λ ∈ [0; 1] we have

f (λx + (1− λ)y) ≥ [λf r (x) + (1− λ)f r (y)]1/r

cases r = −∞, 0,+∞ treated by continuity.

r = −∞ RHS = min{f (x), f (y)} . . . f quasi-concave
r < 0 . . . f r convex
r = 0 RHS = f λ(x)f 1−λ(y)} . . . f log-concave (log f concave)
r > 0 . . . f r concave
r = 1 . . . f concave
r = +∞ RHS = max{f (x), f (y)} . . . f quasi-convex

If f is r∗-concave, it is also r -concave for all r ≤ r∗
⇒ every r -concave function is quasi-concave.

Prékopa(1971) (log-concave measures)
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Generalized concavity properties
r -concave functions
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Generalized concavity properties
r -concave probabilities

Definition 8
Probability measure P (on B(Rs) is r -concave iif for any Borel convex
subset A,B such that P(A) > 0,P(B) > 0 and λ ∈ [0; 1] we have

P(λA + (1− λ)B) ≥ [λPr (A) + (1− λ)Pr (B)]1/r

cases r = −∞, 0,+∞ treated by continuity.

Properties:

1 r -concave probability measure has r -concave distribution function
2 quasi-concave measure P on Rs with dim suppP = s has a density
3 r -concave density ⇔ r

1+mr -concave measure on convex subset
Ω ⊂ Rs of dimm > 0 (so for r > − 1

m )

Borell(1975), Brascamp and Lieb(1976)
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Basic theorems
Convexity of chance constraints

Theorem 9 (Prékopa(1995))
If
(i) gj(x ; ξ), j ∈ J . . . quasi-concave functions of x and ξ;
(ii) ξ . . . r.v. with r -concave density;
(iii) r ≥ − 1

s (s is the dimension of ξ);
Then

G(x) := P{gj(x ; ξ) ≥ 0, j ∈ J }

is γ = r
1+rs -concave function on the set

D := {x | ∃z ∈ Rs : gj(x ; z) ≥ 0 ∀j ∈ J }

(ii) implies ξ have γ-concave probability
r = 0 . . . G(x) is log-concave
r = − 1

s . . . G(x) is quasi-concave
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Basic theorems
Convexity of chance-constrained feasible set

Theorem 10
If
(i) gj(·, ·), j ∈ J . . . quasi concave jointly in both arguments
(ii) ξ ∈ Rs . . . random variable with r -concave probability distribution
then

Xε = {x | G(x) ≥ 1− ε}

is convex and closed.

in fact, (ii) means quasi-concave probability distribution (or
equivalently − 1

s -concave density);
many prominent multivariate distributions have log-concave (or at
least quasi-concave and/or for some parameters) distribution
(uniform, normal, Wishart, Beta, Dirichlet, Gamma, Cauchy, Pareto)
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Literature review
Theory

Charnes, Cooper and Symonds(1958) formulated a model with
individual probabilistic constraints.

Kataoka(1963), van de Panne and Popp(1963) proposed a solution
approach for individual normal constraints.

Miller and Wagner(1965):
1 Investigated the model of joint constraints with independent rvs on

RHS;
2 They found convexity conditions using statistical hazard function,
3 Designed three algorithms based on linearization of logarithmic

chance constraints.

Jagannathan(1974) relaxed the assumption of independence for the
RHS case, and considered also the case of an independent random
coefficient matrix (with a common row variance).
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Literature review
Prekopa’s contributions

Andras Prekopa
We owe Prekopa several main contributions in chance constrained
optimization

1 He studied joint constraints with dependency Prékopa(1970), and
introduced quasi-concave constraint function, and log-concave
measures in Prékopa(1971).

2 He proved the convexity for right-hand sided problems for
log-concave distribution and concave gi in Prékopa(1971) .

3 He studied the property of α-concavity for many prominent
distributions (multivariate gamma) in Prékopa and Szántai(1978).

4 He gave the generalized definition of α-concave measures on a set,
and used for extending optimality and duality theory in Dentcheva,
Prekopa and Ruszczynski(2000, 2002).

5 He introduced p-efficient points in Prékopa(1990)
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Approximations of chance constraints

ACC
Sample average approximation (SAA) studied by Shapiro(1993),
Ahmed and Shapiro(2002), . . .

Scenario approximation method studied by
Calafiore and Campi(2005), Calafiore and Campi(2006), extended by
Nemirovski and Shapiro(2006).

Robust optimization scheme: Ben-Tal and Nemirovski(1998),
Bertsimas and Sim(2004), El Ghaoui and Lebret(1997)

Integer programming approach: Luedtke and Ahmed(2008),
Luedtke, Ahmed and Nemhauser(2010) . . .
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Approximations of chance constraints

ACC

Second-order cone programming considered by Cheng and Lisser(2012).
A completely positive representation of 0-1 linear programs with joint probabilistic
constraints Cheng and Lisser(2013).
Distributionally Robust Stochastic Knapsack Problem Cheng, Delage and Lisser (2014).
Chance constrained 0-1 quadratic programs using copulas Cheng and Lisser(2015).
Stochastic games in Singh, Lisser and Jouini (2015).
Stochastic geometric optimization with joint probabilistic constraints in Liu, Lisser and
Chen (2016).
Variational inequality formulation for the games with random payoffs, Vikas Vikram
Singh, Abdel Lisser, (2018).
A Characterization of Nash Equilibrium for the Games with Random Payoffs, Vikas
Vikram Singh, Abdel Lisser, (2018).
Rectangular chance constrained geometric optimization in Jia Liu, Shen Peng, Abdel
Lisser, Zhiping Chen, (2019).
A second-order cone programming formulation for two player zero-sum games with
chance constraints, Vikas Vikram Singh, Abdel Lisser, (2019).
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Solving methods
State of the art

. . . Several solving methods

Cutting plane method
Logarithmic barrier function method
Dual method (nonlinear probabilistic problems)
Primal-Dual method (linear probabilistic problems)
Nonparametric estimates of distribution functions (joint chance
linear constraints)
A response surface method
Discrete distributions
Probabilistic valid inequalities

See Shapiro et al (2006) for more details
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Normal distribution
Normal distribution with independent constraint rows

min cT x s.t. G(x) = P{Ξx ≤ h} ≥ p

If the rows Ξk
T are independent and follow Nn(µk ; Σk � 0) then

ξk(x) := ΞT
k x − µT

k x√
xTΣkx

, gk(x) := hk − µT
k x√

xTΣkx
,

so
G(x) = P{gk(x) ≥ ξk(x), k ∈ K}

where ξk(x) ∼ N(0; 1).
If K = 1 (only one constraint) then

X(p) =
{

x ∈ X | µ1
T x + F−1(p)

√
xTΣ1x ≤ h1

}
.

To extend the result to K > 1 (more constraint rows): introduce auxiliary
variables yk . If the rows are independent, then (Cheng and Lisser(2012))

X(p) =
{

x ∈ X | ∃yk ≥ 0,
K∑

k=1

yk = 1 :

µk
T x + F−1 (pyk )

√
xTΣkx ≤ hk for every k ∈ K

}
.
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Normal distribution
Normal distribution with independent constraint rows
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Problem formulation

Consider the following joint linear chance constrained problem:

min cT x s.t. P{Tjx ≤ Dj , j ∈ K} ≥ p, x ∈ X ,

X ⊂ Rn
+ . . . is a polyhedron

c ∈ Rn, . . . D = (D1, . . . ,Dk) ∈ RK

T = [T1, . . . ,TK ]′ . . . is a K × n random matrix
Tk , k = 1, . . . ,K . . . is a random vector in Rn

p . . . is a confidence parameter

1 Tk is multivariate normally distributed with mean
µk = (µk1, . . . , µkn) and covariance matrix Σk .

2 Moreover, Tki and Tkj are pairwise independent.
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Joint probabilistic constraints
Deterministic equivalent formulation

Hence we obtain the following deterministic nonlinear problem

min cT x s.t. µTk x + F−1(pyk )||Σ1/2
k x || ≤ Dk , k = 1, . . . ,K

K∑
k=1

yk = 1, yk ≥ 0, k = 1, . . . ,K

x ∈ X .

Consequence: linear approximation of F−1(pyk ) results in

1 piecewise tangent approximation (⇒ outer bound for feasible
solutions)

2 piecewise linear approximation (⇒ inner bound for feasible solutions)
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Approximations of NLPJP

Approximation of F−1(pyk )
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Convex approximation of the feasible set: main result
Chance-constrained problem with independent constraint rows

min cT x s.t. P{Tx ≤ D} ≥ p

Theorem 11
1 Let yki = ykxi , k = 1, . . . ,K , i = 1, . . . , n
2 z̃k = (z̃k1, . . . , z̃kn).
3 Together with the approximation of F−1(pyk ), we have

min cT x s.t. µTk x + ||Σ1/2
k z̃k || ≤ Dk , k = 1, . . . ,K ,

z̃ki ≥ ajxi + bjyki , j = 0, 1, . . . ,N − 1, i = 1, . . . , n∑
kyki = xi , yki ≥ 0, k ∈ K , i = 1, . . . , n, x ∈ X .

where a0 = 0, b0 = 0.
Moreover, if

3 zN = 1 and the feasible set of yk , k = 1, . . . ,K is bounded by [z1, 1]K

then the optimum of the approximation is an upper bound of the deterministic
equivalent problem.
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Convex approximation of the feasible set: main result
Chance-constrained problem with independent constraint rows

min cT x s.t. P{Tx ≤ D} ≥ p

Theorem 12
1 Let yki = ykxi , k = 1, . . . ,K , i = 1, . . . , n
2 z̃k = (z̃k1, . . . , z̃kn).
3 Together with the approximation of F−1(pyk ), we have

min cT x s.t. µTk x + ||Σ1/2
k z̃k || ≤ Dk , k = 1, . . . ,K ,

z̃ki ≥ âjxi + b̂jyki , j = 0, 1, . . . ,N − 1, i = 1, . . . , n∑
kyki = xi , yki ≥ 0, k ∈ K , i = 1, . . . , n, x ∈ X .

where a0 = 0, b0 = 0.
Moreover, the optimum of the approximation is a lower bound of the deterministic
equivalent problem.
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Restricted shortest path with joint constraints
Problem formulation

The Restricted shortest path (RCSP) with joint constraints can be
formulated as

min c(x) s.t. Tx ≤ D, Mx = b, x ∈ {0, 1}n

c ∈ Rn . . . cost (deterministic) vector
M ∈ Rm×n . . . the node-arc incidence matrix
b ∈ Rm . . . where all elements are 0 except the s-th
T . . . is a non negative K × n matrix
D . . . is a positive vector of K elements.

We assume that the arc used resources are pairwise normal independent
random variables.

. . . numerical experiments concerns only the RCSP linear relaxation
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Restricted shortest path with joint constraints

Assumptions
We assume that, for each arc of the network, the resources consumed by
traversing the arc are random and independently normally distributed.

Relaxed RCSP with joint constraints

min cT x
s.t. Pr{Tx ≤ D} ≥ 1− α

Mx = b
x ≥ 0

which is a NLPJP problem.
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Restricted shortest path with joint constraints
Numerical experiments

1 the problems were solved by Sedumi
2 all tests ran on a Pentium(R)D @ 3.00 GHz with 2.0 GB RAM
3 5 instances taken from the OR-library with 10 constrained resources

Instances and parameters

(100− > 200, 999− > 1960) . . . graph sizes
[0, σ2(k)] . . . means and variances interval
z1 = e−6, z2 = 0.15, z3 = 1 . . . piecewise linear approximation points
z1 = 0.15 and z2 = 0.45 . . . piecewise tangent approximation points
p = 0.99 . . . the confidence parameter
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Numerical results

Instances (Nodes, Arcs) Lower CPU Upper CPU Gap(%)
bound time (s) bound time (s)

RCSP1 (100,990) 100.20 18.72 104.20 15.74 3.84

RCSP3 (100,999) 6.16 17.54 6.61 17.91 6.81

RCSP4 (100,999) 8.88 19.49 9.98 18.48 11.02

RCSP6 (200,1960) 5.00 24.84 5.00 28.36 0.00

RCSP7 (200,1960) 5.40 39.79 5.65 35.95 4.42
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Joint rectangular probabilistic constraints
Deterministic equivalent formulation

0-1 quadratic program with chance rectangular constraints

min xTP0x + pT0 x s.t. P{Ax + D1 ≤ Tx ≤ Bx + D2} ≥ 1− α
wT
t x = dt , t = 1, . . . ,m

w̄T
t̄ x ≤ d̄t̄ , t̄ = 1, . . . , m̄

xTP1x + pT1 x ≤ d0
x ∈ {0, 1}n.

where

T = [T1, . . . ,TK ]T . . . normally distributed random matrix
µk = (µk1, . . . , µkn),Σk . . . known mean and covariance
p0, p1, wt , w̄t̄ ∈ Rn . . . real vectors
Di = (Di1, . . . ,DiK ) ∈ RK , i = 1, 2 . . . given real matrices
P0, P1 ∈ Rn×n, A, B ∈ RK×n . . . deterministic matrices
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Rectangular CC
Formulation

. . . Tk , k = 1, . . . ,K , are pairwise independent

P{Ax + D1 ≤ Tx ≤ Bx + D2} ≥ 1− α

is equivalent to

K∏
k=1

P{AT
k x + D1k ≤ TT

k x ≤ BT
k x + D2k} ≥ 1− α

. . . which is satisfied iff there exists y ∈ RK
+ s.t

∑K
k=1 yk = 1, and

P{AT
k x + D1k ≤ TT

k x ≤ BT
k x + D2k} ≥ (1− α)yk , ∀ k ∈ {1, 2, . . . ,K}
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Rectangular CC
Reformulation

Let zk and z̄k , k ∈ {1, 2, . . . ,K} be two additional auxiliary variables

. . . We have the following equivalent formulation

P{AT
k x + D1k ≤ TT

k x ≤ BT
k x + D2k} ≥ (1− α)yk

this is equivalent to

P{TT
k x ≤ BT

k x + D2k} ≥ zk
P{AT

k x + D1k ≤ TT
k x} ≥ z̄k

zk + z̄k ≥ 1 + pyk

0 ≤ zk , z̄k ≤ 1

for k = 1, ...,K .
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Rectangular CC
reformulation

Deterministic formulation of the rectangular chance constrained
problem

min xTP0x + pT0 x s.t. (F−1(zk))2xTΣkx ≤ (BT
k x + D2k − µTk x)2,∀k

(F−1(z̄k))2xTΣkx ≤ (µTk x − AT
k x − D1k)2,∀k

wT
t x = dt , ∀t

w̄T
t̄ x ≤ d̄t̄ , ∀t̄

µTk x ≤ BT
k x + D2k , µ

T
k x ≥ AT

k x + D1k ,∀k
zk + z̄k ≥ 1 + pyk , 0 ≤ zk , z̄k ≤ 1,∀k
K∑

k=1
yk = 1, yk ≥ 0,∀k

xTP1x + pT1 x ≤ d0
x ∈ {0, 1}n.
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Rectangular CC
reformulation

. . . As (F−1(z))2 and py are convex when z ≥ 0.5 and y ≥ 0 respectively,
they can be approximated by a piecewise linear approximation

Lemma 13 (Chang and A.L (2015))
With the piecewise tangent approximation of (F−1(zk))2, and after
linearizing the quadratic terms, i.e., Z k

i,j = F̄kXij , Z̄ k
i,j = F̄kXij ,Xij = xixj ,

we obtain an MILP.

For the sake of simplicity, we get the standard formulation as Burrer
(2009) adding appropriate slack variables:

min vT P̄0v + p̄T0 v
s.t. ŵtv = d̂t , t = 1, . . . ,M

vi ∈ {0, 1}, i = 1, . . . , n
v ∈ RN

+

(1)

where P̄0, p̄0, ĉ, ŵt and d̂t , M, N are defined accordingly.
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Rectangular CC
SDP relaxation

The SDP relaxation of QPJPC together with some redundant constraints
to strength the quality of the bounds is given by

min〈P0,X 〉+ pT0 x s.t. ||Σ1/2
k vk || ≤ BT

k x + D2k − µTk x ,∀k

||Σ1/2
k v̄k || ≤ µTk x − AT

k x − D1k ,∀k
linearization constraints(
1 xT
x X

)
� 0

Xii = xi ≥ 0, i = 1, . . . , n.
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Rectangular CC
Introduction

 

Figure: Violated constraints for different models
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Geometric programs

A geometric program can be formulated as

min
t

g0(t) s.t. gk(t) ≤ 1, k = 1, · · · ,K , t ∈ RM
++

with

gk(t) =
∑
i∈Ik

ci
M∏
j=1

taijj , k = 0, · · · ,K .

{Ik , k = 0, · · · ,K} is the disjoint index sets of {1, · · · ,Q}.

We call ci
∏M

j=1 t
aij
j a monomial and gk(t) a posynomial.
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Geometric programs (Cont’d)

Geometric programs have a number of practical problems, such as

shape optimization problems (Boyd et al., 2007)

electrical circuit design problems (Boyd et al., 2007)

mechanical engineering problems (Wiebking, 1977)

economic and managerial problems (Luptáčik, 1981)

nonlinear network problems (Kim et al., 2007)
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Stochastic geometric programs

Generally, ci are supposed to be non-negative coefficients.

In real life problems, ci is not known deterministically but randomly.

As ci are random variables, we formulate the problem as stochastic
geometric program.

We use probabilistic constraints to model the uncertainty in the
posynomial constraints.
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Stochastic geometric programs (Cont’d)

Stochastic geometric programs with individual probabilistic constraints
can be written as:

(SGPIPC) min
t∈RM

++

E
[∑
i∈I0

ci
M∏
j=1

taijj

]

s.t. P
(∑

i∈Ik

ci
M∏
j=1

taijj ≤ 1
)
≥ 1− εk , k = 1, · · · ,K .

where εk ∈ (0, 0.5] is the tolerance probability for the k-th posynomial
constraint.
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Stochastic geometric programs (Cont’d)

Stochastic geometric programs with joint probabilistic constraints:

(SGPJPC) min
t∈RM

++

E
[∑
i∈I0

ci
M∏
j=1

taijj

]

s.t. P
(∑

i∈Ik

ci
M∏
j=1

taijj ≤ 1, k = 1, · · · ,K
)
≥ 1− ε.

where ε ∈ (0, 0.5] is the tolerance probability for all the posynomial
constraints.
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Our work

We are interested by stochastic geometric program with joint
probabilistic constraints.

We suppose that aij is deterministic and ci is normally distributed
and parwise independent of each other, i.e., ci ∼ N(Eci , σ

2
i ).

We consider the following tools:

1 standard variable transformation from geometric programming
2 piecewise linear approximation
3 sequential convex approximation
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Equivalent formulation

As ci are paiwise independent, we have

P
(∑

i∈Ik

ci
M∏
j=1

taijj ≤ 1, k = 1, · · · ,K
)
≥ 1− ε

is equivalent to
K∏

k=1
P
(∑

i∈Ik

ci
M∏
j=1

taijj ≤ 1
)
≥ 1− ε.
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Equivalent formulation (Cont’d)

We introduce auxiliary variables yk ∈ R, k = 1, · · · ,K , (SGPJPC)
problem can be equivalently reformulated as

min
t∈RM

++,y∈RK
E
[∑
i∈I0

ci
M∏
j=1

taijj

]

s.t. P(
∑
i∈Ik

ci
M∏
j=1

taijj ≤ 1) ≥ yk , k = 1, · · · ,K ,

K∏
k=1

yk ≥ 1− ε, yk ≥ 0.
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Equivalent formulation (Cont’d)

As ci ∼ N(Eci , σ
2
i ), (SGPJPC) problem is equivalent to

min
t∈RM

++,y∈RK

∑
i∈I0

Eci

M∏
j=1

taijj

s.t.
∑
i∈Ik

Eci

M∏
j=1

taijj + Φ−1(yk)

√√√√∑
i∈Ik

σ2i

M∏
j=1

t2aijj ≤ 1, k = 1, · · · ,K ,

K∏
k=1

yk ≥ 1− ε, yk ≥ 0.

Φ−1(yk) is the quantile of standard normal distribution N(0, 1).
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Equivalent formulation (Cont’d)

The standard variable transformation rj = log(tj), j = 1, · · · ,M and
xk = log(yk), k = 1, · · · ,K leads to the equivalent formulation:

min
r∈RM ,x∈RK

∑
i∈I0

Eci exp

{
M∑
j=1

aij rj

}

s.t.
∑
i∈Ik

Eci exp

{
M∑
j=1

aij rj

}
+

√√√√∑
i∈Ik

σ2i exp

{
M∑
j=1

(2aij rj + log(Φ−1(exk )2))

}
≤ 1, k = 1, · · · ,K ,

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, · · · ,K .
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Theorem 14
An approximation of (SGPJPC) problem can be found by using the
piecewise linear function F (xk):

(SGPA)

min
r∈RM ,x∈RK

∑
i∈I0

Eci exp

{
M∑
j=1

aij rj

}
∑
i∈Ik

Eci exp

{
M∑
j=1

aij rj

}
+

√√√√∑
i∈Ik

σ2i exp

{
M∑
j=1

(2aij rj + dsxk + bs)

}
≤ 1, s = 1, · · · , S, k = 1, · · · ,K ,

K∑
k=1

xk ≥ log(1− ε), xk ≤ 0, k = 1, · · · ,K .

The optimal value is a lower bound of the (SGPJPC) problem. When S
goes to infinity, the approximation is tight.
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Sequential convex approximation

Sequential convex approximation ⇒ upper bound
Basic idea: decompose the problem into subproblems where a subset
of variables is fixed alternatively.
We first fix y = yn and update t by solving

(SQ1) min
t∈RM

++

∑
i∈I0

Eci

M∏
j=1

taijj

s.t.
∑
i∈Ik

Eci

M∏
j=1

taijj + Φ−1(ynk )

√√√√∑
i∈Ik

σ2i

M∏
j=1

t2aijj ≤ 1,

k = 1, · · · ,K

Abdel Lisser On chance constrained optimization



Sequential convex approximation (Cont’d)

and then fix t = tn and update y by solving

(SQ2) min
y∈RK

+

K∑
k=1

φk yk

s.t. yk ≤ Φ

1−
∑

i∈Ik Eci
∏M

j=1(tnj )aij√∑
i∈Ik σ

2
i
∏M

j=1(tnj )2aij

 , k = 1, · · · ,K .

K∏
k=1

yk ≥ 1− ε, yk ≥ 0, k = 1, · · · ,K .

φk is a chosen searching direction.

Abdel Lisser On chance constrained optimization



Sequential convex approximation (Cont’d)
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Sequential convex approximation (Cont’d)

Theorem 15
Algorithm 1 converges in a finite number of iterations and the returned
value vn is a upper bound for problem (SGP).

Problems (SQ1) and (SQ2) are both geometric programs, hence they
can be transformed into a convex programming problem, and solved
by interior point methods.
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Shape optimization problem

Consider a joint probabilistic constrained shape optimization problem,

min
h,w ,ζ

h−1w−1ζ−1

s.t. P
(

(2/Awall)hw + (2/Awall)hζ ≤ 1, (1/Aflr )wζ ≤ 1
)
≥ 1− ε,

αh−1w ≤ 1, (1/β)hw−1 ≤ 1,
γwζ−1 ≤ 1, (1/δ)w−1ζ ≤ 1.

maximize the volume of a box-shaped structure with height h, width
w and depth ζ
subject to the total wall area 2(hw + hζ), and floor area wζ
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Settings

Set α = γ = 0.5, β = δ = 2, ε = 5%,

Assume 1/Awall ∼ N(0.005, 0.01) and 1/Aflr ∼ N(0.01, 0.01).

We use CVX software to solve the approximation problems with
Matlab R2012b on a PC with a 2.6 Ghz Intel Core i7-5600U CPU
and 12.0 GB RAM.

We solve five groups of approximation problems with different
number of segments, S.

Abdel Lisser On chance constrained optimization



Computational results

Table 1: Computational results
S Var. Num. Con. Num. Low. bound CPU(s) Upp. bound CPU(s) Gap(%)
1 133 60 0.232 0.5955 0.256 5.5274 9.655
2 184 91 0.234 0.6272 0.256 5.5274 8.789
5 283 153 0.241 0.9480 0.256 5.5274 6.044
10 513 273 0.252 1.3554 0.256 5.5274 1.713
20 973 513 0.256 1.9986 0.256 5.5274 0

Sequential convex approximation algorithm converges within 7 outer
iterations
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n-player game

I = {1, 2, · · · , n} – set of players,

Ai – a finite action set of Player i , and A =
∏

i∈I Ai .

a = (a1, a2, · · · an) ∈ A – an action profile.

r̃i(a) – payoff of player i .

r̃i = (r̃i(a))a∈A – payoff vector of player i .
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Contd.

Xi – set of mixed strategies of player i .

X =
∏

i∈I Xi – set of all mixed strategy profiles.

Denote a mixed strategy of player i by τi .

τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn) is strategy profile of all other
players except player i .
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Nash equilibrium

For a given strategy profile τ = (τ1, τ2, · · · , τn) ∈ X the payoff of
player i is defined by

ri(τ) =
∑
a∈A

∏
j∈I

τj(aj)

r̃i(a). (2)

A strategy profile τ∗ is said to be a Nash equilibrium if for each i ∈ I,

ri(τ∗i , τ∗−i) ≥ ri(τi , τ∗−i), ∀ τi ∈ Xi . (3)

Nash(1950) showed that there always exists a mixed strategy Nash
equilibrium for this game.
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The model

We consider the games where the payoff vector (r̃i(a))a∈A of player i
is a random vector.

Let Ω be a sample space. Then, for an ω ∈ Ω, the payoff of player i
at action profile a is given by r̃i(a, ω).

Similarly, for an ω, payoff of player i at mixed strategy profile τ is
given by

ri(τ, ω) =
∑
a∈A

n∏
j=1

τj(aj)r̃i(a, ω).
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Assumptions

We assume that the distribution of the payoff vector of each player
is known to all the players.

α is known to all the players.

For a given α ∈ [0, 1]n, the payoff function of a player is known to
all other players.

The chance-constrained game is a non-cooperative game with
complete information.
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Best response and Nash equilibrium

The set of best response strategies is given by

BRαi
i (τ−i) = {τ̄i ∈ Xi |uαi

i (τ̄i , τ−i) ≥ uαi
i (τi , τ−i), ∀ τi ∈ Xi}.

For a given α, τ∗ is Nash equilibrium if for all i ∈ I, the following
inequality holds

uαi
i (τ∗i , τ∗−i) ≥ uαi

i (τi , τ∗−i), ∀ τi ∈ Xi .

That is, τ∗i ∈ BRαi
i (τ∗−i) for all i ∈ I.
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Best response and Nash equilibrium
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CCG

The payoff function of each player is defined by

uαi
i (τ) = sup{γ|P(ri(τ) ≥ γ) ≥ αi}.

ri(τ) is defined as

ri(τ) =
∑
a∈A

∏
j∈I

τj(aj)r̃i(a).

We use Kakutani fixed point theorem to show the existence of Nash
equilibrium.
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Nash Existence Theorem

Theorem 16

Consider an n-player game where each player has finite number of
actions. If the payoff vector (r̃i(a))a∈A of player i , i ∈ I, follows a
multivariate elliptically symmetric distribution with location parameter
µi = (µi(a))a∈A and scale matrix Σi which is positive definite, then there
exists a mixed strategy Nash equilibrium for all α ∈ (0.5, 1]n.

Vikas Vikram Singh, Oualid Jouini, and Abdel Lisser, Existence of Nash
equilibrium for chance-constrained games, Operations Research Letters,
44 (5): 640–644, 2016.
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Dependence

Many practical results concerning chance-constrained programming
is based on the assumption of independence of random rows of the
problem.
The proof are usually based on the separability property of the form

F (ξ) =
∏
k∈K

Fk(ξk)

where F is the distribution function of ξ and Fk its marginals.
To capture the dependance, we can use copulae (Nelsen(2006))
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Dependence: copulae
Definition and basic properties

Definition 17
The copula is the distribution function C : [0; 1]K → [0; 1] of some
K -dimensional random vector whose marginals are uniformly distributed
on [0; 1].

Proposition 18 (Sklar’s theorem)

For any K-dimensional distribution function F : RK → [0; 1] with
marginals F1, . . . ,FK , there exists a copula C such that

∀z ∈ RK F (z) = C
(
F1(z1), . . . ,FK (zK )

)
.

If, moreover, Fk are continuous, then C is uniquely given by

C(u) = F
(
F−11 (u1), . . . ,F−1K (uK )

)
.

Otherwise, C is uniquely determined on rangeF1 × · · · × rangeFK .
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Dependence: copulae
Archimedean copulae

Definition 19
A copula C is called Archimedean if there exists a continuous strictly
decreasing function ψ : [0; 1]→ R+, called generator of C , such that
ψ(1) = 0 and

C(u) = ψ−1

( n∑
i=1

ψ(ui)
)
.

If limu→0 ψ(u) = +∞ then C is called a strict Archimedean copula and ψ
is called a strict generator.

Properties of copula generator

ψ is convex
ψ−1 is continuous strictly decreasing convex on [0;ψ(0)]
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Dependence: copulae
Archimedean copulae: copula generators

Practical advantages of Archimedean copulae:

associative class (separability)
explicit formulae of generators for most common copulae
model dependence through one “nice” generator function and
usually one or a small number of parameters
many families adapted to a concrete problem setting (Nelsen(2006)
provides a table of 22 one-parameter families of Archimedean
copulae)

Some known shortcomings:

Gaussian copula is not Archimedean
all copula margins are the same ⇒ only symmetric dependence
structures described
limited area of dependence structures (due to small number of
parameters)
less ability to capture negative dependence
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Dependence: copulae
Examples of Archimedean copulae

1 independence (product) copula

ψ(t) := − ln t,

2 Gumbel-Hougaard copulae, with θ ≥ 1

ψθ(u) := (− ln t)θ

3 Clayton copulae, with with θ ≥ 0

ψθ(u) := −1
θ

(t−θ − 1)
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Normal distribution
Normal distribution with independent constraint rows

min cT x s.t. G(x) = P{Ξx ≤ h} ≥ p

If the rows Ξk
T are independent and follow Nn(µk ; Σk � 0) then

ξk(x) := ΞT
k x − µT

k x√
xTΣkx

, gk(x) := hk − µT
k x√

xTΣkx
,

so
G(x) = P{gk(x) ≥ ξk(x), k ∈ K}

where ξk(x) ∼ N(0; 1).
If K = 1 (only one constraint) then

X(p) =
{

x ∈ X | µ1
T x + Φ−1(p)

√
xTΣ1x ≤ h1

}
.

To extend the result to K > 1 (more constraint rows): introduce auxiliary
variables yk . If the rows are independent, then (Cheng and Lisser(2012))

X(p) =
{

x ∈ X | ∃yk ≥ 0,
K∑

k=1

yk = 1 :

µk
T x + Φ−1 (pyk )

√
xTΣkx ≤ hk for every k ∈ K

}
.
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Normal distribution
Normal distribution with independent constraint rows

If K = 1,X(p) =
{

x ∈ X | µ1
T x + F−1(p)

√
xTΣ1x ≤ h1

}
If K > 1 (more constraint rows): introduce auxiliary variables yk . If the
rows are independent, then (Cheng and Lisser(2012))

X(p) =
{

x ∈ X | ∃yk ≥ 0,
K∑

k=1

yk = 1 :

µk
T x + F−1 (pyk )

√
xTΣkx ≤ hk for every k ∈ K

}
.

If K > 1 with dependent random vectors then (Cheng, Houda and
Lisser(2014)

X(p) =
{

x ∈ X | ∃yk ≥ 0,
K∑

k=1

yk = 1 :

µk
T x + Φ−1

(
ψ−1(ykψ(p))

)√
xTΣkx ≤ hk , k ∈ K

}
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Normal distribution and dependence
Chance-constrained problem with dependent constraint rows

min xTQx + cT x subject to P{Tx ≤ d} ≥ p, Ax = b, x ∈ {0, 1}n

where

1 c ∈ Rn, d ∈ RK , and b ∈ Rm are deterministic vectors,
2 Q ∈ Rn×n and A ∈ Rm×n are deterministic matrices,
3 T ∈ RK×n is a random matrix with rows TT

k , k = 1, . . . ,K ,
4 p ∈ (0; 1) is a prescribed probability level.
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Approximation to SOCP problems
Lower and outer approximation

Lemma 20

If the random vector (ξ1(x), . . . , ξK (x))T , where ξk(x) has
one-dimensional standard normal distribution, has a joint distribution
driven by the Gumbel-Hougaard copula Cθ with some θ ≥ 1 then the
constraint P{Tx ≤ d} ≥ p is equivalent to the set of constraints

µTk x + Φ−1
(
pz

1/θ
k

)∥∥∥Σ1/2
k x

∥∥∥ ≤ dk ∀k,∑
k

zk = 1, zk ≥ 0 ∀k

where Φ(·) is the inverse of the standard normal cumulative distribution
function.

Lemma 21

If p ≥ 1
2 and θ ≥ 1 then H(z) := Φ−1

(
pz1/θ

)
is convex on [0; 1].
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Approximation to SOCP problems
Lower and outer approximation

Consequence: deterministic reformulation given by

min xTQx + cT x subject to µTk x + Φ−1
(
pz

1/θ
k

)
‖Σ1/2

k x‖ ≤ dk ∀k,
K∑

k=1
zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n.

(4)

The problem (4) is equivalent to

min xTQx + cT x subject to
(

Φ−1
(
pz

1/θ
k

))2
xTΣkx ≤ (dk − µTk x)2 ∀k,

µTk x ≤ dk ∀k,
K∑

k=1
zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n.

(5)
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Approximation to SOCP problems
Lower and outer approximation

Consequence: linear approximation results in

1 piecewise tangent approximation (⇒ outer bound for feasible
solutions)

2 piecewise linear approximation (⇒ inner bound for feasible solutions)

Using the Taylor approximation of H(z)2 at zk and linearizing the
quadratic terms, we provide its piecewise-tangent approximation,

min〈X ,Q〉+ cT x s.t. 〈Σk ,Z k〉 ≤ d2
k − 2dkµ

T
k x + 〈µkµ

T
k ,X〉 ∀k

µT
k x ≤ dk ∀k

F̂ k − (1− Xij)U+ ≤ Z k
ij ≤ F̂ k ∀i , j, k

0 ≤ Z k
ij ≤ XijU+ ∀i , j, k

al + blzk ≤ F̂ k ∀k, l
xi + xj − 1 ≤ Xij ≤ min{xi , xj} ∀i , j
Xii = xi ∀i , Xij ≥ 0 ∀i , j
K∑

k=1

zk = 1, zk ≥ 0 ∀k, Ax = b, x ∈ {0, 1}n.
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Approximation to SOCP problems
Lower and outer approximation

This model is a relaxation of problem (4) as shown by the following
lemma:
Lemma 22

The optimal value φ∗N of the previous model is a lower bound of (4).
Moreover if the trivial solution x = 0 is not feasible to (4) and tangents
points are uniformly selected on the interval (0, 1], then lim

N→+∞
φ∗N = φ∗

where φ∗ is the optimal value of (4).

When we approximate H(z)2 by using the piecewise-linear technique,
then we have another mixed integer linear program which is a
restriction of the problem (4)

Lemma 23
The optimal value φ∗N of the restriction problem is an upper bound
of (4). Moreover if the trivial solution x = 0 is not feasible to (4) and
the interpolation points are uniformly selected on the interval (0, 1], then

lim
N→+∞

φ∗N = φ∗ where φ∗ is the optimal value of (4).
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Approximation to SOCP problems
SDP relaxation CCQP

min xTQx + cT x subject to P{Tx ≤ d} ≥ p, Ax = b, x ∈ {0, 1}n

SDP relaxation...

min〈X ,Q〉+ cT x s.t.
(

(dk − µT
k x)I Σ1/2

k z̃k
z̃kT (Σ1/2

k )T dk − µT
k x

)
� 0 ∀k

z̃ki ≥ alxi + blzki ∀i , l
K∑

k=1

zki = xi , zki ≥ 0 ∀i , k

F̃k − (1− xi)M+ ≤ z̃ki ≤ M+xi ∀i , k
0 ≤ z̃ki ≤ F̃k ,∀k, i , al + blzk ≤ F̃k ∀l , k

AT
t x = bt , AT

t XAt = b2
t , ∀t

K∑
k=1

zk = 1, zk ≥ 0 ∀k(
1 xT

x X

)
� 0, X ≥ 0.
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Stochastic multidimentional quadratic knapsack problem
Numerical experiments

1 the problems were solved by Sedumi
2 all tests ran on a Pentium(R)D @ 3.00 GHz with 2.0 GB RAM
3 3 instances taken from the OR-library with 10 constrained resources

Instances and parameters

[10, 20] . . . matrix Q interval generation
[0, 5] . . . µk interval generation
[10, 20] . . . capacity d interval generation
p = 0.9 . . . the confidence parameter
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stochastic multidimensional quadratic knapsack problems
Numerical results

Table: Computational results when p = 0.9

θ = 1 VMILP (C) CPU VMILP (R) CPU Gap VLP CPU Gap VSDP CPU GAP
e+03 (s) e+03 (s) (%) e+03 (s) (%) e+03 (s) (%)

(14,5,5) 2.731 0.80 2.911 0.39 6.59 3.668 0.03 34.31 3.156 0.56 15.56
(28,10,5) 6.734 29.31 6.899 16.15 2.45 9.365 0.44 39.07 7.535 3.13 11.89
(50,5,10) 8.025 312.61 8.025 251.79 0.00 11.19 9.31 39.56 9.271 92.75 15.53

θ = 2 VMILP (C) CPU VMILP (R) CPU Gap VLP CPU Gap VSDP CPU GAP
e+03 (s) e+03 (s) (%) e+03 (s) (%) e+03 (s) (%)

(14,5,5) 2.731 0.76 2.911 0.36 6.59 3.668 0.03 34.31 3.178 0.60 16.37
(28,10,5) 7.361 15.73 7.361 16.60 0.00 9.369 0.45 27.28 7.725 3.64 4.94
(50,5,10) 8.025 253.88 8.025 228.29 0.00 11.20 7.35 39.56 9.513 92.32 18.54

θ = 5 VMILP (C) CPU VMILP (R) CPU Gap VLP CPU Gap VSDP CPU GAP
e+03 (s) e+03 (s) (%) e+03 (s) (%) e+03 (s) (%)

(14,5,5) 2.731 0.47 2.731 0.39 0.00 3.668 0.03 34.31 3.167 0.64 15.96
(28,10,5) 7.361 10.76 7.361 14.87 0.00 9.366 0.43 27.24 7.830 3.14 6.37
(50,5,10) 8.025 269.26 8.025 103.62 0.00 11.19 5.21 39.44 9.594 85.47 19.55
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Conclusions

1 Handling joint chance constraints with continuous distributions with
dependent random variables, quadratic objective function, and 0− 1
variables is a challenging problem.

2 Using the approaches presented above, we solved linear and
quadratic problems with 0− 1 variables using conic optimization
formulations.

3 Recently, we introduced chance constraints in stochastic games.
4 A high number of results are currently published on distributionally

robust chance constrained problems.
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