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Formal Verification
in Model-Based Design

How to guarantee absence of bugs
(not just finding bugs)?
« continuous dynamic systems

« under bounded uncertainty (parameters, noise)

. under discrete events

Methods inspired from formal computer science
« abstract interpretation (Cousot & Cousot, '77)
« model checking (Clarke, Emerson, '80; Sifakis, '82)

« compositional analysis (Clarke et al., '89)



Variety of Application Domains

assisted and human-robot
automated driving interaction

Dosing stafion X2 Mixing stafionX 2 Discharging station X 2
Ll
e
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chemical analog mixed-signal autonomous drones
batch plants circuits

FP7 + H2020 projects NANO 2017 project Collaborations

1. Automated vehicle of Tecnalia 2. Sandwich assembly robot of R.U.Robotics Ltd. 3. 4. MILOX™: Pipeless Production System
5. Dang, Donzé, Maler. Verification of analog and mixed-signal circuits using hybrid systems techniques. FMCAD'04 6. Bitcraze Crazyflie


http://www.itproportal.com/2012/12/21/smart-cities-smarter-buildings/
http://www.toyo-eng.co.jp/en/product_line/medication/milox/index.html

Modelling Complex Systems

P88 Tecnalia Twizy

First Principles o B UnCovercPs

ODEs kinematics
DAEs electrical, chemical, mechanical networks
PDEs heat, sound, fluids, elasticity
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Modelling Complex Systems

First Principles

ODEs
DAEs
PDEs

Communication

Events
Messages
Delays and Losses

Data-Based

Regression / Kalman
Gaussian Models
Machine Learning (NN)

Unpredictable Env.

People
Autonomous Vehicles
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How to Verify Complex Systems?

Simulation Model ——— » Mathematical Model

Generalize Simplify
. . abstract:
compute trajectories .
. . ; model-order reduction
identify equivalent L
projection

neighborhoods approximate bisimulation

this talk
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Hybrid Systems - Semantics

e Continous/Discrete Behaviour

— evolution with time according to ODE dynamics
— dynamics can switch (instantaneous)

— state can jump (instantaneous)
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Modeling Hybrid Systems

e Example: Bouncing Ball
— ball with mass m and position x in free fall
— bounces when it hits the ground at z = 0

— initially at position =, and at rest

A

T —P
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Hybrid Automaton Model

r = X
v=20
location
\/ freefall \
|z > 0 bounce
invariant — P r=0Av <0

0 _ V= —cv
flow )< /
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Example: Bouncing Ball

e States over Time

Lo

position x

time ¢

velocity v

time ¢
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Example: Bouncing Ball

e States over States = State-Space View
O
position x T
(1)
behavior from x,(t)

single initial state

Y v velocit
%, J
""'II/////
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Example: Bouncing Ball

e Reachability in State-Space

position x

behaviors from
set of initial states =

reachable state

velocity v
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Hybrid Automata with Affine Dynamics
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e linear differential equations

e can be highly nondeterministic:
— additive “inputs” u,w model continuous disturbances (noise etc.)

Key: find approximation that is efficient but accurate for a
large number of continuous variables
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Reachability Operations

e States reachable from initial Set R,
e Fixpoint Computation
Ris1 = Ry Upost(Ry,)
with post-operations

— time elapse
— image of discrete transitions
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Fixpoint Computation

e Checks Required for Termination

— Containment

— Emptiness

e Intersection with
bad states

— optional
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Time Elapse Computation

e Continuous time elapse for affine dynamics
— efficient, scalable

— approximation without accumulation of approximation error
(wrapping effect)

e Much heritage from prior work
— Chutinan, Krogh. HSCC’'99
— Asarin, Bournez, Dang, Maler. HSCC’00
— Girard. HSCC'05
— Le Guernic, Girard. HSCC’06, CAV'09



Affine Dynamics

e linear terms plus inputs U:

T=Ax+u,ueclU

e solution:
t
z(t) = e*z(0) —|—/ e A=) y(T)dr
0

/
matrix exponential

factors influence of inputs
(stable system forgets the past)
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From Time-Discretization to Reach

e States in discrete time:
Xrs = (eAa)kXo D Sks

\

integral over inputs

| | | >
0/8 20 30 ¢t

need to cover also states in between!
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From Time-Discretization to Reach

e Cover in discrete time:

Qs (k+1)8) = (€A5)k9[0,5]@‘11k5

@ Minkowski sum = pointwise sum of sets %% o | @
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From Time-Discretization to Reach

e 1st order Taylor approximation

e different bounds on the remainder

—— — ———— — — ——— —

CAV’11: Complex Polytope
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Problem: State Explosion

e Bouncing ball example:

3 sets jump

§
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Problem: State Explosion

e Bouncing ball example:

9 sets jump m
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Problem: State Explosion

e Bouncing ball example:

cover with
minimal number
of sets

[HSCC’13]
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Example: Controlled Helicopter

Photo by Andrew P Clarke

e 28-dim model of a Westland Lynx helicopter
— 8-dim model of flight dynamics
— 20-dim continuous Hoo controller for disturbance rejection

— stiff, highly coupled dynamics

S. Skogestad and |. Postlethwaite, Multivariable Feedback Control: Analysis and Design. John Wiley & Sons, 2005.
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Simulation vs Reachability

e Simulation

— single behavior

vertical os,

speed

v, [ft/s]

—._reachable?

0.4+ . .
simulation run

5 10 15 20 25 30
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Simulation vs Reachability

e Simulation

— single behavior

vertical os, x . ; - , —__reachable?
speed

0.

1000 simulation runs

initial —s_ o
states & @

>
=0

0.4+ 1

-0.6 L L 1
0 5 10 15 20 25 30
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Simulation vs Reachability

e Simulation e Reachability
— single behavior — cover of all behaviors
vertical os, , , y , . —.__reachable?
speed ' I NOT!
initial —_ -
states 5 {\/x// R e
-0-4j reachable states over time (~ 5sec)
255 5 10 15 20 25 30

t [s]
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Simulation vs Reachability

e Simulation e Reachability
— deterministic — nondeterministic
*resolve nondet. using scontinuous disturbances...

Monte Carlo etc. -implementation tolerances...

— scalable for nonlinear dyn. — scalable for linear dynamics

vertical os,

speed 0'4’,

initial —_ -
states 5 {\/\// e

—-0.4+
, ( equivalent
~0.65 z k>228 corner case simulations

ULS]
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Simulation vs Reachability

e corner case simulation: check all extreme points
— nvariables, T time steps
— Initial set given by intervals = 2" vertices
— Inputs given by intervals = 2" vertices
/Zn (Z/m)T {ajectories

[initial set} [ inputs ] [time steps]
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Simulation vs Reachability

e corner case simulation: check all extreme points
— nvariables, T time steps
— Initial set given by intervals = 2" vertices
— Inputs given by intervals = 2" vertices

2" (2m)T trajectories

e template reachability (interval enclosure):

[T O(n3) operations]
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SpaceEx Verification Platform

e reachability, monitoring, simulation
ADHS’09, ICTSS’11, CAV "11

e open source: spaceex.imag.fr
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SpaceEx Verification Workflow

System Model Requirement
(Simulink etc.) (natural language)
Abstraction / Language Template
Simplification (Structured English)
Formal Model Monitor
(Hybrid Automaton) (Hybrid Automaton)

| l

spec violated «—  Reachability Analysis — spec satisfied

|

unknown
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SL2SX: Translating Simulink to SpaceEx

e semi-automatic, gentle subset of Simulink

— continuous time linear blocks

— steps, switches, etc.

SIMULINK SpaceEXx

Automotive Suspension from Simulink Example Library
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SL2SX: Translating Simulink to SpaceEx

_ Initial Pitch = -0.120 Initial Pitch = -0.120
-0.12 -0.120 = : : ]
—0.122 -
0.125 —0.124F i
—-0.126 .
Simulink el SpPacCeEXx _
1 Simulation \f‘”‘— il Simulation F

-0.132

-0.135 _ 1 L 1 ]
0 1 2 3 4 5 © 7 8 9 10 0'1340 2 4 6 8 10

Automotive Suspension from Simulink Example Library
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SL2SX: Translating Simulink to SpaceEx

0.115

J
\"
\
\

Initial Pitch [-0.121,-0.119]

SpaceEx
Verification ' .

D 1 .:’:\?_

SpaceEx
Verification

,\/—_~ -

Automotive Suspension from Simulink Example Library
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Reachable States over Time

o flowpipe

A

“\linitial states
Xo
C
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Template Reachability

template polyhedra (box)

Girard and Le Guernic, 2008
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Template Reachability

"\ initial approx

template polyhedra (box)

Girard and Le Guernic, 2008
Frehse, Le Guernic, Kateja, 2013
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unsafe
states

Template Reachability

@

Girard and Le Guernic, 2008
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refined
template

Template Reachability

HSCC’15, TACAS’17, CAV'18

A
"\ initial approx

C
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Example: Switched Oscillator
CAV’11

e Low number of directions sufficient?

— here: 6 state variables

minor
differences

. box directions . octagonal directions
6 x more work
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Example: International Space Station

property with 1 variable: 40s, with 270 variables: 45min
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Case Study: Electro-Mechanical Brake
RTSS’14

Electric |......, Brake
A 4
Motor Caliper
—
deadline_miss
ohnekraft timeg > 1 A time; > miss(2) A timez > miss(3)
Atimes > miss(4) A times > miss(5)
I' == (-R/L + K*K/(L*d_rot) )*I + 1/L* U & time4 := timeg A time3 := timez A times := time;
X' == K/(i*d_rot)*1 time; := timeg A timeg :=0
m

NoMiss .
0 < timeg < 1 deta.dllne>_mlet
time(, = 1/P A time] = 1/P A time, = 1/P til:ee::;o

" ot U_pos /\timeg = l/P 74N timef, = I/P

Plant & Controller Scheduler (timed automaton)

Frehse, Hamann, Quinton, Woehrle. Formal analysis of timing effects on closed-loop properties of control software. RTSS'14
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Case Study: Electro-Mechanical Brake

Software
Timing
. model ——— Closed-loop
activa —— erminate . oroperties
hedul Derive
Sc eduler scheduler Plant f————
— Mode - properties
(a) Timing analysis of software - -
Discretized
Closed-loop Software ——*C)
properties Model 3
| write
Plant A Scheduler
Continuous Property
) Software Model
Model

(c) Closed-loop verification
(b) Closed-loop verification including timing effects



Case Study: Electro-Mechanical Brake

caliper position

[dm]

0.05

0.00!

0.04f
0.03}
0.02}

0.01}

0

é | tll | é | é | 110 | 1‘2
verified: reaches target within 20ms

t[ms]

time

52



Case Study: Electro-Mechanical Brake

current

I
[A]

1.0

/" \—

highest impact not from the fastest

0.9-
0.8.-
0.7;
0.6.-

0.5

0.3

0.4r

........................

8

13

t[ms]

time

physical properties: maximum impulse on contact

(measured via current)
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Case Study: Electro-Mechanical Brake

caliper position [ 1 case fails completely J

0.05
0.04
0.03
0.02
0.01

0.00t

controller with (artificial) fault time
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Unpredictability

e How to deal with an unpredictable environment?

o safe
e adaptive

e supervision

56



Plan for the best, check for the worst

v

Knowledge Application

enlarge refine

. Conformance  Pessimistic Model Optimistic Model
Check simple, abstract complex, precise

Real-time Verification Long-term Planning

J J l safe actions

Safety supervisor <«

i

System performance

observations

N optimal action
certifiable

safety

similar to QoS safety: Combaz, Fernandez, Sifakis, Strus. 2008
automated driving: Koschi, Althoff, 2017; Schirmann; Hel3; Eilbrecht; Stursberg; Koster; Althoff, 2017 57



ONLINE REACHABILITY ANALYSIS

Px = Vx

Py =Vy
Vy = dy
Vy = dy

—>

%(‘2 = {(ax,ay) e R x R|a? -l—af, = u%m}

pe

Create Physical Model
of Walking Pedestrian

Uy COS S5
Uy SIN S5
u,

Create Physical Model
of Robot

HORIZON 2020

—

12

16
X{m)

18

2

22

T~

Compute Reachable Sets

for each Pedestrian

Q51

e

Compute Reachable Sets

for Robot

Check for
Possible Collisions
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! UnCoV;r !
\LF5)  Case Study: Automated Driving

target trajectory

reachable states
——— of manceuvre (offline)

mancoeuvre library
(offline)

Daniel Hess. Safe Vehicle Cooperation in UnCoVerCPS. 2016
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Case Study: Automated Driving

reachability:
final states contained
in initial states

¥

can be chained

¥

manoeuvre automaton

Daniel Hess. Safe Vehicle Cooperation in UnCoVerCPS. 2016

‘ ® BOSCH EREL # tecnalia J e Eﬂl-tlRsl:lB::n;sk




Case Study: Automated Driving

online;
from manoeuvre automaton,
choose safe subset

@

Daniel Hess. Safe Vehicle Cooperation in UnCoVerCPS. 2016

& BOSCH h,e, / # tecnalia ) e RLIROBOTS

Cognitive Science at Work
0
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b Case Study:
e Human-Robot Co-Existence

Matthias Althoff. Artemis Spring Event. http://road2cps.eu/events/wp-content/uploads/2015/10/UnCoVerCPS.pdf
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Case Study:
Human-Robot Co-Existence

Experiment at TU Munich (Althoff et al.)
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Conclusions and Perspectives

e Set-based simulation: exhaustive envelope
e Can account for uncertainty

—  modeling error, operating conditions
—  environment and user behavior
e Huge potential for online use
—  Verification: garantee safety
—  Monitoring: measurements conform to model

—  Prediction: trigger fail-safe in time
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