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1

CONTEXT

e Large monitoring datasets underexploited for pre-
dictive maintenance

e Continuous stream analysis

e Heterogeneous and complex data
e Predict fault and plan maintenance operations

2 CHALLENGES/OBJECTIVES/GAPS

e Heterogeneous data management:
- Structured / non-structured

- Continuous / sparse and discrete
- Different time scales
e Weakly supervised data

e Online setting

=> How to handle these pieces of knowledge?
- Fuse complementary parts

- Discard redundancy / irrelevant parts
-> How to deal with missing / imbalanced modalities?

=> How to integrate reliability levels?

Image Space

Text Space
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Multimodal Documents
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Figure 1: Common subspace learning, where multimodal data with similar semantics are represented by similar vectors [1]
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3 RESEARCH METHOD

Unsupervised setting
Not task-guided
Able to generate missing data

Generative model

Learning a joint multimodal representation
In a latent subspace.

Viable architectures:
e PGM [5]
e Multimodal AE [ 3]
e GAN [4], etc.
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Figure 2: Deep joint representation aims to learn a
shared semantic subspace [1]

e Mimic human mecanism for information fusion: at-
tention mechanism [2] / neuroscience

4 EXPECTED CASE STUDY

A typical setting would involve a system containing:
e Sensors time series

e Textual data from previous maintenances / diag-
noses

e Structured description data

e Pictures, sound, etc.

-> Perform diagnosis: fault detection and isolation

Any system with multimodal data enabling to per-
form pathological cases detection

5 EXPECTED RESULTS

e Make substantial progress in the multimodal
learning state-of-the-art

e Apply contributions to MPO project partner enti-
ties usecases
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