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1 CONTEXT

•Large monitoring datasets underexploited for pre-dictive maintenance
•Continuous stream analysis
•Heterogeneous and complex data
•Predict fault and plan maintenance operations

2 CHALLENGES/OBJECTIVES/GAPS

•Heterogeneous data management:–Structured / non-structured
–Continuous / sparse and discrete
–Different time scales

•Weakly supervised data
•Online setting

ÔHow to handle these pieces of knowledge?–Fuse complementary parts
–Discard redundancy / irrelevant parts

ÔHow to deal withmissing / imbalancedmodalities?
ÔHow to integrate reliability levels?

Figure 1: Common subspace learning, where multimodal data with similar semantics are represented by similar vectors [1]

3 RESEARCH METHOD

Unsupervised settingNot task-guidedAble to generate missing data
}

Generative model
Learning a joint multimodal representationin a latent subspace.

z = f (x1, x2, . . . , xm)

Figure 2: Deep joint representation aims to learn ashared semantic subspace [1]

Viable architectures:
•PGM [5]
•Multimodal AE [3]
•GAN [4], etc.

•Mimic humanmecanism for information fusion: at-tention mechanism [2] / neuroscience
4 EXPECTED CASE STUDY

A typical setting would involve a system containing:•Sensors time series
•Textual data from previous maintenances / diag-noses
•Structured description data
•Pictures, sound, etc.

ÔPerform diagnosis: fault detection and isolation
Any system with multimodal data enabling to per-form pathological cases detection

5 EXPECTED RESULTS

•Make substantial progress in the multimodallearning state-of-the-art•Apply contributions to MPO project partner enti-ties usecases
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