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Task-driven forecasting with random forests
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1. CONTEXT 3. CASE STUDY: Production unit problem, with

asymmetric costs

Gsupervised learning, theory and applications focus on the predictabi&
/ Energy ﬁ D L(D,P,l) := + C, - max{D, — P,; 0} \

of a target Y given some feature vector X, measured by classic metrics

such as RMSE, MAE or MAPE. Yet, in practice, such metrics do not reflect it : & Unmet demand cost  Revenue
the impact of prediction error, since the way those predictions are used is @, '

not taken into account. Research has been done in this direction with L )
neural networks [1]. We focused on a rather simple use-case for which L ot §

we simulated data. We proceeded to build a forecast of Y, optimized for l -

the task, based on the knowledge of how the data was simulated, which
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makes for an oracle benchmark and we also build adapted decision trees
(and by natural extension random forests) for this specific task [2,3].

Nets can perform significantly better than bagging methods on some ¢
tasks, yet they loose interpretability and most importantly, are usually .
regarded as a difficult-to-implement to solution, contrary to random Demand was simulated as an AR(1) process.
forest.
\ / 4. RESULTS
The prediction criterion must be changed in order to respond to the taskﬁ
2. PROPOSAL ﬁeast 50% improvement), changing the splitting criterion is not sufficient in
itself (83% loss) but it does help when combined with prediction (task loss
/ \ drops to 37% and matches that of task-based LM).
Let

Normalized loss (RMSE / Task-specific) on test set
(Yi’ Xl) e ? X U some ta rget and features for the forecasters built from different techniques.
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L:OXY >R our loss function
R:yYXy->R classic risk function b
Agnostic
n Loss
arg min Z R(f(X),Y)) 2y = Ruse
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arg min Z L (arg min L (9, f(Xl.)), Yi) 0.25-
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Let 0*(y) := argminL (6,y) . We consider two ways to adapt
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y* ((Yi)ieleaf) = arg min Z L(0*(y); ¥)) 4 R
V€Y icleaf Code robustness and development. A comparison with the work on neural
Splitting nets [1] would be interesting.
A /
arg min L| &% <y* (Y;) >,Yl>
Y Ieavzes(v) ielzeaf ( ( leleaf) REFERENCES
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