Uncertainty quantification for random neutronics Corentin Houpert^{1,2}, Philippe Humbert¹ and Josselin Garnier²

Motivations

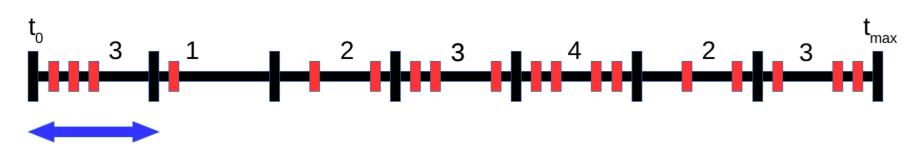
- ► Nuclear matter emits neutrons, detection is used to identify the type of matter.
- Extracted data are composed of a timelist file, which is a listing of detection times
- ► Given a timelist file, how can we estimate the fissile matter characteristics?

Neutronic fluctuations

Neutron fluctuations are due to branching processes

- neutron reactions (fission, capture)
- source (spontaneaous fission)
- detection

Main random process is the fission branching process. We analyse the timelist file as follows



Physical parameters

Parameters of the model

- $\triangleright \varepsilon_F = \frac{\text{count number}}{\text{induced fission number}}$
- *C* induced fission number
- \blacktriangleright S intensity of the source
- $\blacktriangleright \rho$ reactivity of the system
- x proportion of spontaneaous fission source neutrons

Measurements

Average count number and Feynman moment

$\bar{C}(T) = M_1$

Nuclear Datas

v̄ average number of neutron emitted by a fission
D_i = ^{*v̄*(*ν*-1)···(*ν*-*i*)}/_{*v̄*ⁱ}, *i* ∈ ℕ* Diven factor (idem for D_{i,S}, *i* ∈ ℕ*)

Т

FIGURE – Sequential binning

It produces a count vector from which we compute empirical moments.

Point model and forward problem

- A stochastic point model was introduced by R.Feynman during the Manhattan project.
- More precisely : all the neutrons move at same speed in an infinite homogeneous, isotropic medium.
 - A neutron ends its life by capture (with or without detection) or induced fission.
 - Neutrons are produced by induced fission and by source which can be a Poisson or compound Poisson process (spontaneous fission).

We consider the following outputs

Average count number

$$\bar{C}(T) = \frac{\varepsilon_F S}{-\rho\bar{\nu}}T$$

► Feynman moment of order 2

$$Y_2(T) = \frac{\varepsilon_F D_2}{\rho^2} \left(1 - x\rho \frac{\bar{\nu}_S D_{2S}}{\bar{\nu} D_2} \right) \left(1 - \frac{1 - e^{-\alpha T}}{\alpha T} \right)$$

 $Y_{2}(T) = \frac{2M_{2}}{M_{1}} - M_{1}$ $Y_{3}(T) = \frac{6M_{3}}{M_{1}} - 6M_{2} + 2M_{1}^{2}$

where $M_i, i \in \mathbb{N}$, moment of order *i* of neutrons detected in [0, T].

The inverse problem, point estimation

We are looking for the ${\bf u}$ which minimizes the mean square error function

$$\begin{aligned} ||\mathbf{y}_{obs} - \mathbf{f}(\mathbf{u})||_{\Gamma}^{2} \\ \text{where } \mathbf{y}_{obs} = \begin{pmatrix} \bar{C}(T) \\ Y_{2}(T) \\ Y_{3}(T) \end{pmatrix} \text{ are the measures, } \mathbf{u} = \begin{pmatrix} \varepsilon_{F} \\ \rho \\ S \\ x \end{pmatrix} \text{ the parameters, and } \Gamma \text{ is } \end{aligned}$$

the covariance matrix of the empirical Feynman moments. We obtain the best estimation $\hat{\mathbf{u}}$ using optimization methods like simulated annealing.

	Parameters			Feynman moments		
	ε_F	S	ρ	\bar{C}	Y_2	Y_3
Given values	0.481	1000	-0.258	769.75272	6.9939	117.2060
Estimated values	0.4614	1020.4884	-0.2526	769.7501	6.9746	117.2123

Feynman moment of order 3

$$Y_{3}(T) = 3\left(\frac{\varepsilon_{F}D_{2}}{-\rho^{2}}\right)^{2} \left(1 - x\rho\frac{\bar{\nu}_{S}D_{2S}}{\bar{\nu}D_{2}}\right) \left(1 + e^{-\alpha T} - 2\frac{1 - e^{-\alpha T}}{\alpha T} - \frac{\varepsilon_{F}D_{3}}{\rho^{3}} \left(1 - x\rho\frac{\bar{\nu}_{S}^{2}D_{3S}}{\bar{\nu}^{2}D_{3}}\right) \left(1 - \frac{3 - 4e^{-\alpha T} + 2e^{-2\alpha T}}{\alpha T}\right)$$

Check of the point model with Monte Carlo codes

Test problem : Fissile solution (UHE+water)

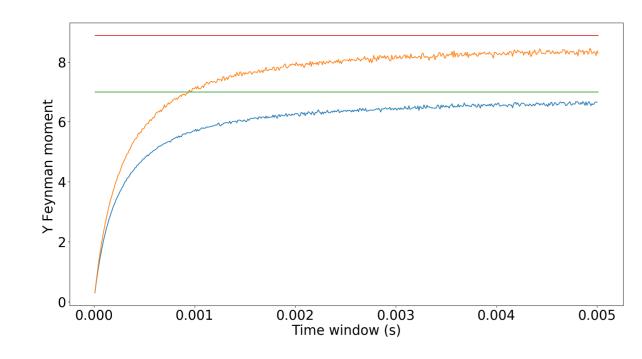


FIGURE – Feynman moment of order 2 for the fissile solution (UHE+water)

- Tripoli-4 Freya model detailled fission
- ► <u>MCNP</u> Terrell type distribution (gaussian)
- Feynman moment of order 2 in function of the time window (Tripoli-4)
- Asymptotic value of the Feynman moment of order 2 for Tripoli-4
- Feynman moment of order 2 in function of the time window (MCNP)
- Asymptotic value of the Feynman moment of order 2 for MCNP

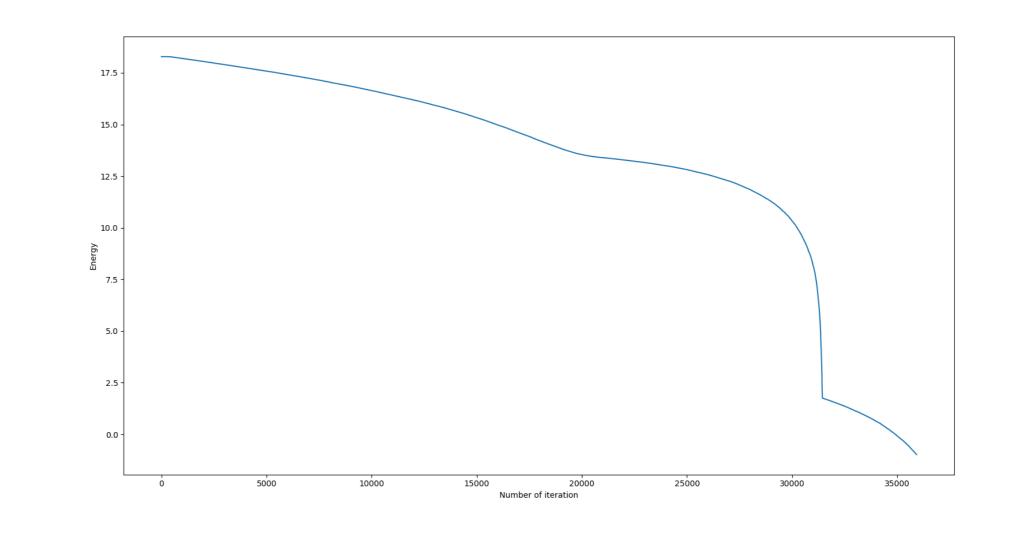


FIGURE - Evolution of the mean square error function In a second part, we will use a Bayesian approach.

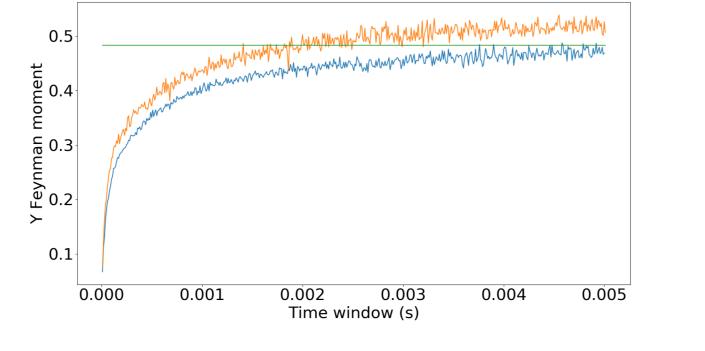
The inverse problem, bayesian inference

The bayesian approach returns the whole distribution.

 $\mathbb{P}(\mathbf{u}|\mathbf{y}_{obs}) \propto \mathbb{P}(\mathbf{y}_{obs}|\mathbf{u}) \qquad \mathbb{P}(\mathbf{u})$ $a \text{ posteriori distribution} \qquad \mathbb{P}(\mathbf{y}_{obs}|\mathbf{u}) \qquad \mathbb{P}(\mathbf{u})$ $likelihood \ a \text{ priori distribution}$ We will use Markov Chain Monte Carlo methods, to obtain the posterior distributions.

Test problem :

- \blacktriangleright Cf^{252} : Spontaneous fission source, Poisson compound
- Feynman moment of order 2 in function of the time window (Tripoli-4)
- Feynman moment of order 2 in function of the time window (MCNP)
- Asymptotic value of the Feynman moment of order 2



 ${\rm FIGURE}$ – Feynman moment of order 2 for the Cf^{252}

The point model is valid, it can be used for the inverse problem.

Conclusions

- Point model is good enough to serve as a forward model in the solution of the inverse problem.
- The ultimate goal is to apply a bayesian approach to estimate the a posteriori distribution of the nuclear matter parameters.

References

- [1] Leo Breiman, PROBABILITY AND STOCHASTIC PROCESSES : With a View Toward Applications
- [2] Pazsit & Enquvist, Neutron noise in zero power systems, Nuclear Engineering, Department of Applied Physics, Chalmers University of Technology, Götenborg, Sweden 2008
- [3] J. M. Verbeke & O. Petit, Stochastic Analog Neutron Transport with TRIPOLI-4 and FREYA : Bayesian Uncertainty Quantification for Neutron Multiplicity Counting, NUCLEAR SCIENCE AND ENGINEERING, Vol. 183, 2016
- [4] Hage & Cifarelli, Correlation Analysis with Neutron Count Distributions in Randomly or Signal Trigerred Time Intervals for Assay of Special Fissile Material, NUCLEAR SCIENCE AND ENGINEERING, Vol. 112, 1992

¹ CEA, DAM, DIF, F-91297 Arpajon, France; ² CMAP (UMR 7641), École polytechnique, Route de Saclay, 91128 Palaiseau

corentin.houpert@cea.fr