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Motivations

I Nuclear matter emits neutrons, detection is used to identify the type of matter.
I Extracted data are composed of a timelist file, which is a listing of detection times
I Given a timelist file, how can we estimate the fissile matter characteristics ?

Neutronic fluctuations

Neutron fluctuations are due to branching processes
I neutron reactions (fission, capture)
I source (spontaneaous fission)
I detection

Main random process is the fission branching process.
We analyse the timelist file as follows

Figure – Sequential binning

It produces a count vector from which we compute empirical moments.

Point model and forward problem

I A stochastic point model was introduced by R.Feynman during the
Manhattan project.

I More precisely : all the neutrons move at same speed in an infinite
homogeneous, isotropic medium.
A neutron ends its life by capture (with or without detection) or induced
fission.
Neutrons are produced by induced fission and by source which can be a
Poisson or compound Poisson process (spontaneous fission).

We consider the following outputs
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Check of the point model with Monte Carlo codes

Test problem : Fissile solution (UHE+water)

Figure – Feynman moment of order 2 for
the fissile solution (UHE+water)

I Feynman moment of order 2 in function of the

time window (Tripoli-4)

I Asymptotic value of the Feynman moment of

order 2 for Tripoli-4

I Feynman moment of order 2 in function of the

time window (MCNP)

I Asymptotic value of the Feynman moment of

order 2 for MCNP

I Tripoli-4 Freya model detailled fission
I MCNP Terrell type distribution (gaussian)

Test problem :
I Cf 252 : Spontaneous fission source, Poisson compound

I Feynman moment of order 2 in function of the

time window (Tripoli-4)

I Feynman moment of order 2 in function of the

time window (MCNP)

I Asymptotic value of the Feynman moment of

order 2

Figure – Feynman moment of order 2 for
the Cf 252

The point model is valid, it can be used for the inverse problem.

Physical parameters

Parameters of the model
I εF = count number

induced fission number

I S intensity of the source
I ρ reactivity of the system
I x proportion of spontaneaous

fission source neutrons

Nuclear Datas
I ν̄ average number of neutron

emitted by a fission

I Di = ν(ν−1)···(ν−i)
ν̄i , i ∈ N∗ Diven

factor (idem for Di,S, i ∈ N∗)

Measurements
I Average count number and Feynman moment
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where Mi, i ∈ N, moment of order i of neutrons detected in [0, T ].

The inverse problem, point estimation

We are looking for the u which minimizes the mean square error function

||yobs − f(u)||2Γ

where yobs =
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 the parameters, and Γ is

the covariance matrix of the empirical Feynman moments.
We obtain the best estimation û using optimization methods like simulated
annealing.

Parameters Feynman moments
εF S ρ C̄ Y2 Y3

Given values 0.481 1000 −0.258 769.75272 6.9939 117.2060
Estimated values 0.4614 1020.4884 −0.2526 769.7501 6.9746 117.2123

Figure – Evolution of the mean square error function

In a second part, we will use a Bayesian approach.

The inverse problem, bayesian inference

The bayesian approach returns the whole distribution.

P(u|yobs)
a posteriori distribution

∝ P(yobs|u)
likelihood

P(u)
a priori distribution

We will use Markov Chain Monte Carlo methods, to obtain the posterior
distributions.

Conclusions

I Point model is good enough to serve as a forward model in the solution of
the inverse problem.

I The ultimate goal is to apply a bayesian approach to estimate the a
posteriori distribution of the nuclear matter parameters.
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