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Motivations

» Nuclear matter emits neutrons, detection is used to identify the type of matter.
» Extracted data are composed of a timelist file, which is a listing of detection times
» Given a timelist file, how can we estimate the fissile matter characteristics ?

Neutronic fluctuations

Physical parameters

Neutron fluctuations are due to branching processes Parameters of the model
» neutron reactions (fission, capture)
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Main random process is the fission branching process.
We analyse the timelist file as follows

» p reactivity of the system

» 1z proportion of spontaneaous
fission source neutrons

L - Measurements
3 1 2 3 4 2 3
boo——f—f—t=—— = » Average count number and Feynman moment
—— C(T) = M,
-
2 Mo
FIGURE — Sequential binning YQ(T) — M, M;
It produces a count vector from which we compute empirical moments. Y5(T) = 6]\‘]\443 6 M,y + 2M?
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Point model and forward problem where M;, 1 € N, moment of order ¢ of neutrons detected in |0, 7.

» A stochastic point model was introduced by R.Feynman during the
Manhattan project.

> More precisely : all the neutrons move at same speed in an infinite We are looking for the u which minimizes the mean square error function
homogeneous, isotropic medium.

A neutron ends its life by capture (with or without detection) or induced

The inverse problem, point estimation
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fission. C(T) -
Neutrons are produced by induced fission and by source which can be a where y,s = | Yo(T) | are the measures, u = g the parameters, and [ is
Poisson or compound Poisson process (spontaneous fission). Y3(T)
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We consider the following outputs the covariance matrix of the empirical Feynman moments.

> Average count number We obtain the best estimation u using optimization methods like simulated

C(T) = ngiT annealing.
» Feynman moment of order 2 - Parameters Feynman moments
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Check of the point model with Monte Carlo codes

Test problem : Fissile solution (UHE+water)
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FIGURE — Evolution of the mean square error function
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) R In a second part, we will use a Bayesian approach.
%6 » Asymptotic value of the Feynman moment of
order 2 for Tripoli-4 The inverse problem, bayesian inference
Ez_ » Feynman moment of order 2 in function of the
time window (MCNP) The bayesian approach returns the whole distribution.
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FIGURE — Feynman moment of order 2 for
the fissile solution (UHE+water)

» Tripoli-4 Freya model detailled fission
» MCNP Terrell type distribution (gaussian)
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» Point model is good enough to serve as a forward model in the solution of
the inverse problem.

a posteriort distribution likelihood a priorit distribution

We will use Markov Chain Monte Carlo methods, to obtain the posterior
distributions.

» (' f** : Spontaneous fission source, Poisson compound

» The ultimate goal is to apply a bayesian approach to estimate the a
et A e posteriori distribution of the nuclear matter parameters.
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FIGURE — Feynman moment of order 2 for
the C %

The point model is valid, it can be used for the inverse problem.
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