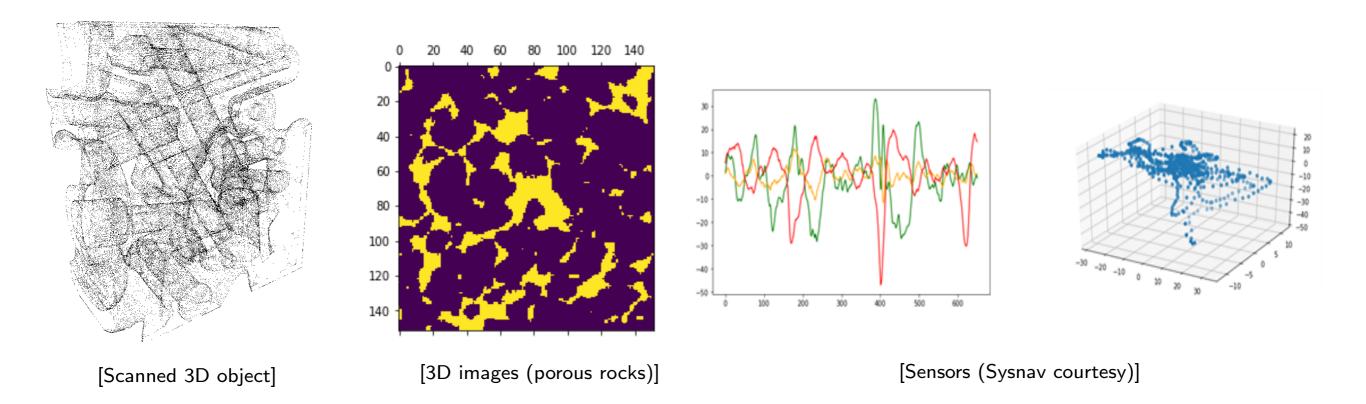
Seminar@SystemX June 20, 2019

Understanding the shape of data: a brief introduction to Topological Data Analysis

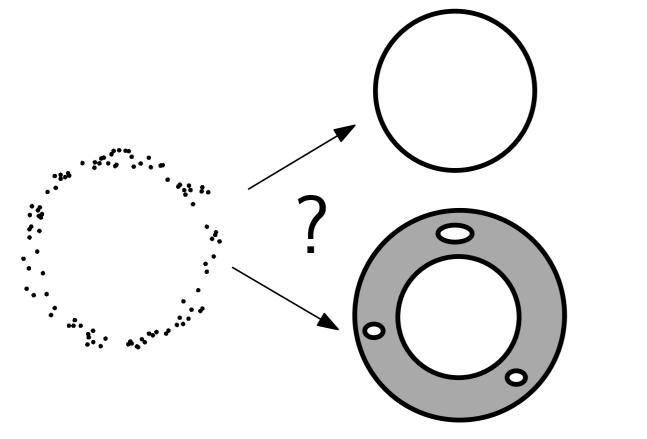
Frédéric Chazal DataShape team INRIA Saclay - Ile-de-France frederic.chazal@inria.fr

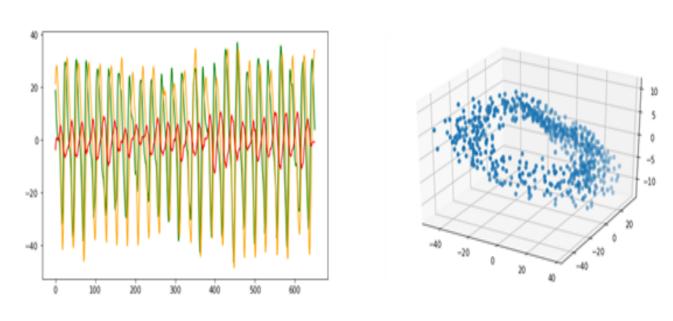
What is topological structure of data?



Modern data carry complex, but important, geometric/topological structure!

What is topological structure of data?

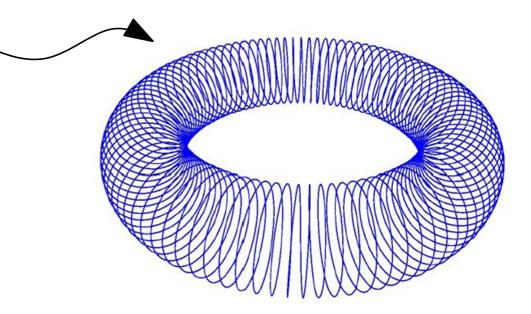




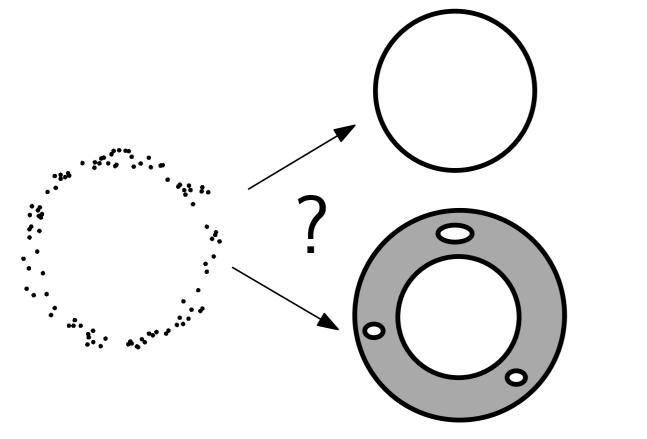
A non obvious problem:

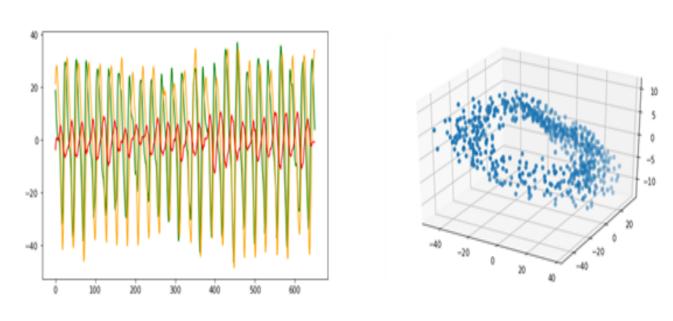
- \rightarrow no direct access to topological/geometric information: need of intermediate constructions (simplicial complexes);
- ightarrow distinguish topological "signal" from noise;
- $\rightarrow\,$ topological information may be multiscale;
- $\rightarrow\,$ statistical analysis of topological information.

Topological Data Analysis (TDA) Persistent homology!



What is topological structure of data?

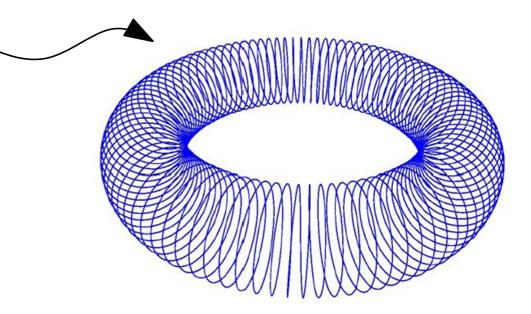




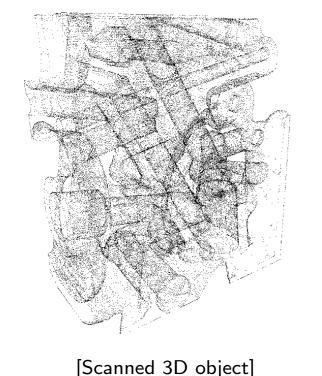
A non obvious problem:

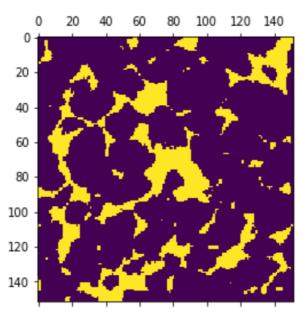
- \rightarrow no direct access to topological/geometric information: need of intermediate constructions (simplicial complexes);
- ightarrow distinguish topological "signal" from noise;
- $\rightarrow\,$ topological information may be multiscale;
- $\rightarrow\,$ statistical analysis of topological information.

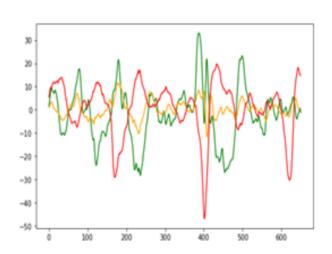
Topological Data Analysis (TDA) Persistent homology!

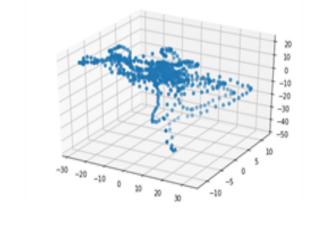


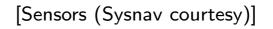
What is Topological Data Analysis (TDA)?











Topological Data Analysis (TDA) is a recent field whose aim is to:

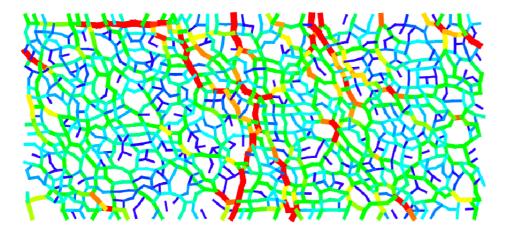
- infer relevant topological and geometric features from complex data,
- take advantage of topological/geometric information for further Data Analysis, Machine Learning and AI tasks.

For what kind of data is TDA useful?

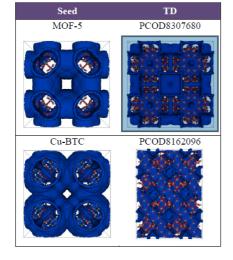
• Complex data!

For what kind of data is TDA useful?

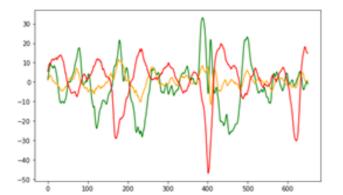
- Complex data!
- Examples (where TDA brings real added value):

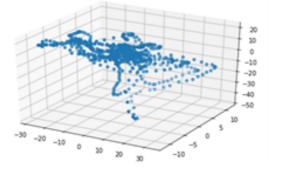


Force fields in granular media



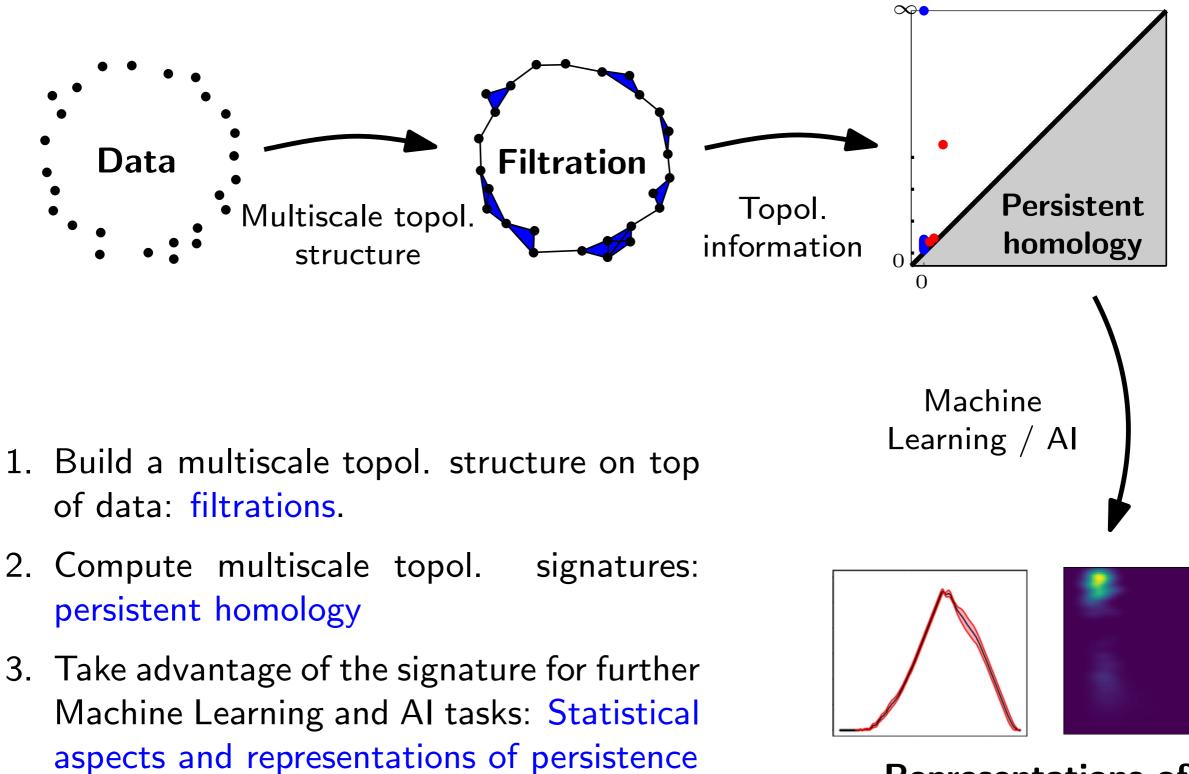
Nanomaterial design





(Chaotic) time-dependent data - see later in the talk

The classical TDA pipeline



Representations of persistence

Persistent homology

The theory of persistence

A recent theory that is subject to intense research activities:

- from the mathematical perspective:

- general algebraic framework (persistence modules) and general stability results.
- extensions and generalizations of persistence (zig-zag persistence, multipersistence, etc...)
- Statistical analysis of persistence.

- from the algorithmic and computational perspective:

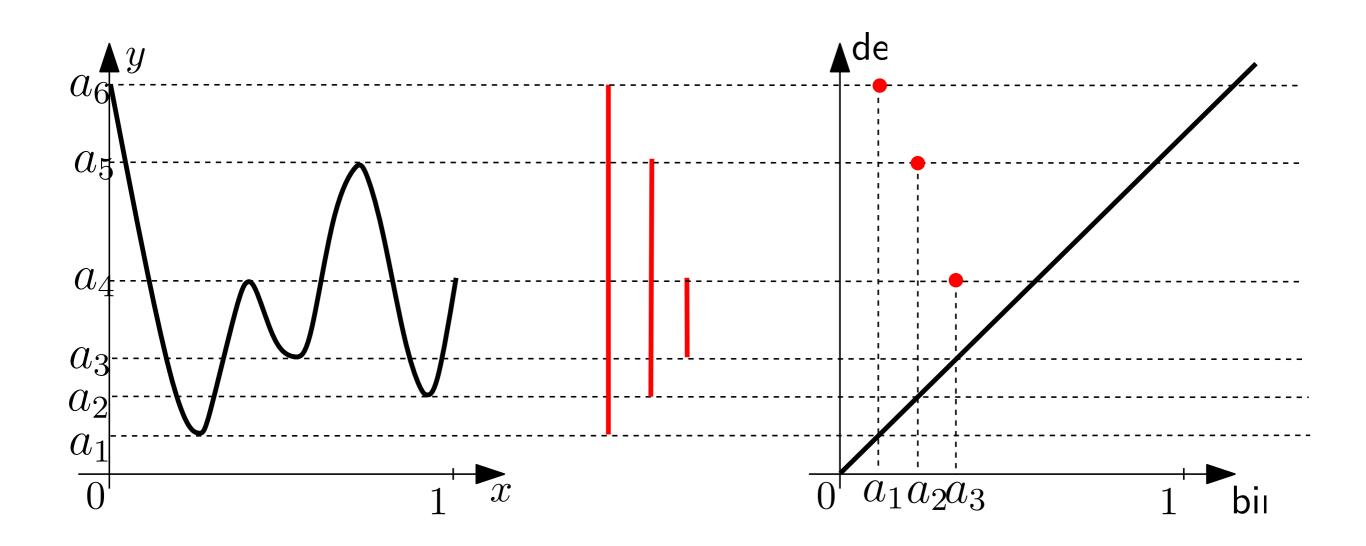
- efficient algorithms to compute persistence and some of its variants.
- efficient software libraries (in particular, Gudhi: https://project.inria.fr/gudhi/).

- from the data science perspective:

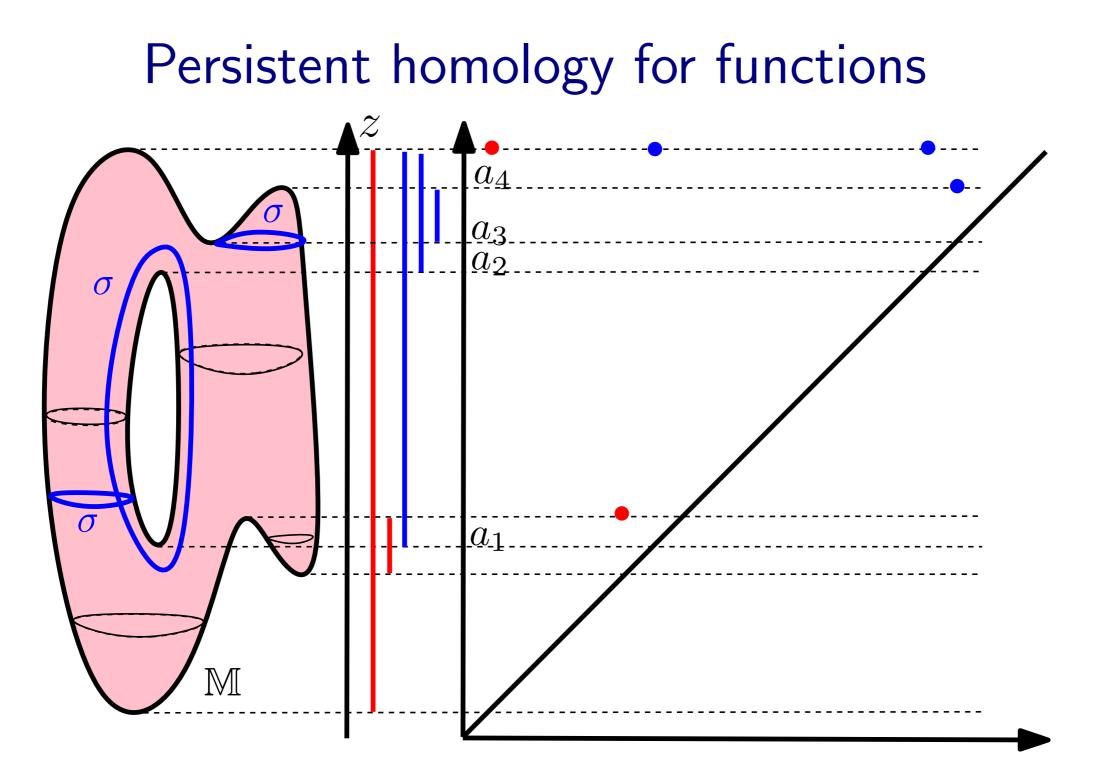
- representations of persistence that are suitable for Machine Learning
- Topological/geometric information in combination with other features

A whole machinery at the crossing of mathematics and computer science!

Persistent homology for functions



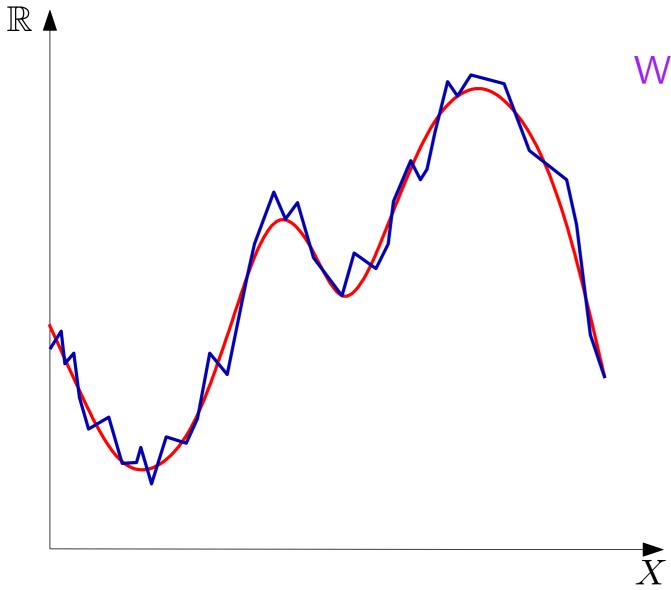
Tracking and encoding the evolution of the connected components (0-dimensional homology) of the sublevel sets of a function



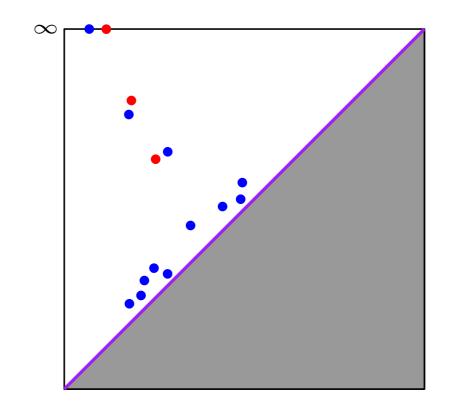
Tracking and encoding the evolution of the connected components (0-dimensional homology) and cycles (1-dimensional homology) of the sublevel sets.

Homology: an algebraic way to rigorously formalize the notion of k-dimensional cycles through a vector space (or a group), the homology group whose dimension is the number of "independent" cycles (the Betti number).

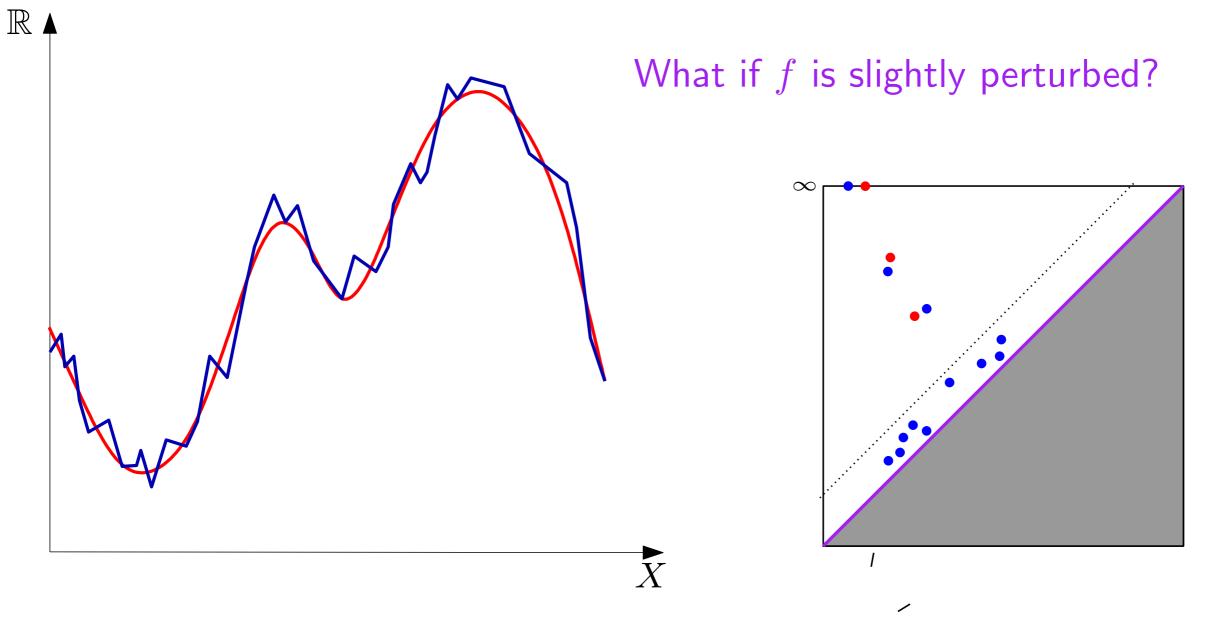
Stability properties



What if f is slightly perturbed?



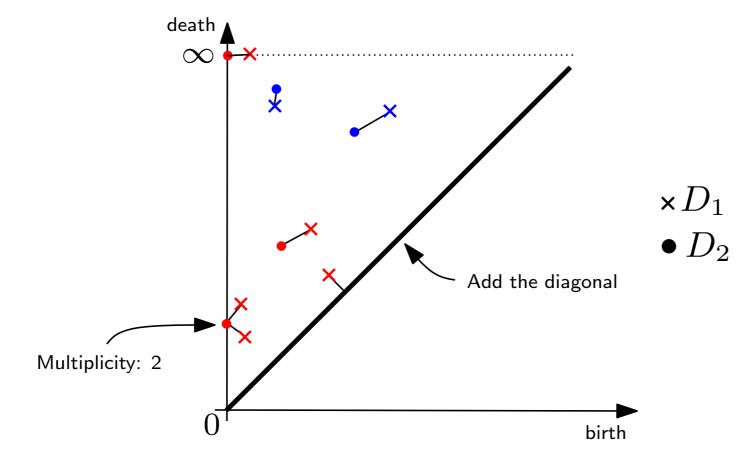
Stability properties



Theorem (Stability): For any *tame* functions $f, g : \mathbb{X} \to \mathbb{R}$, $d_B(D_f, D_g) \le ||f - g||_{\infty}$.

[Cohen-Steiner, Edelsbrunner, Harer 05], [C., Cohen-Steiner, Glisse, Guibas, Oudot - SoCG 09], [C., de Silva, Glisse, Oudot 12]

Comparing persistence diagrams



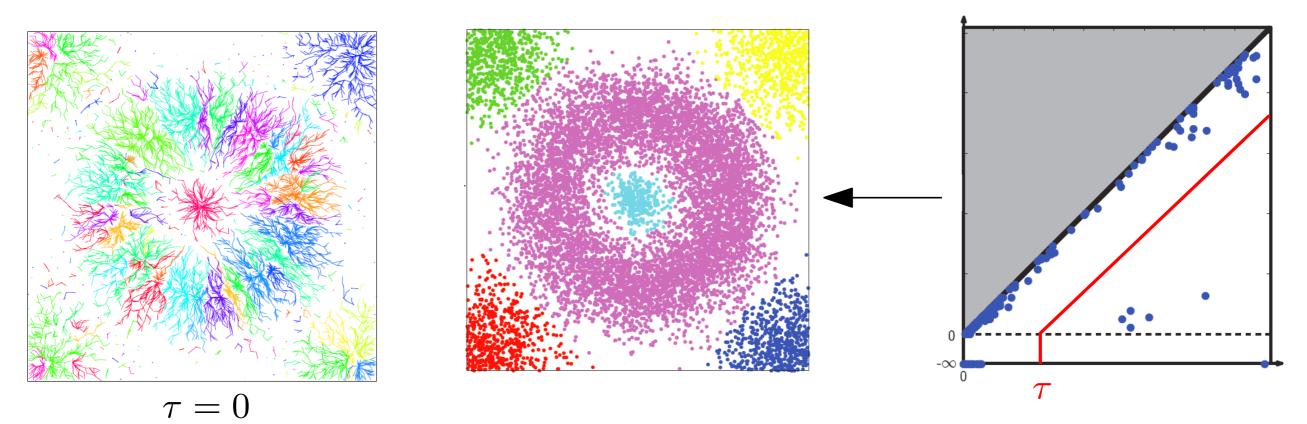
The bottleneck distance between two diagrams D_1 and D_2 is

$$d_B(D_1, D_2) = \inf_{\gamma \in \Gamma} \sup_{p \in D_1} \|p - \gamma(p)\|_{\infty}$$

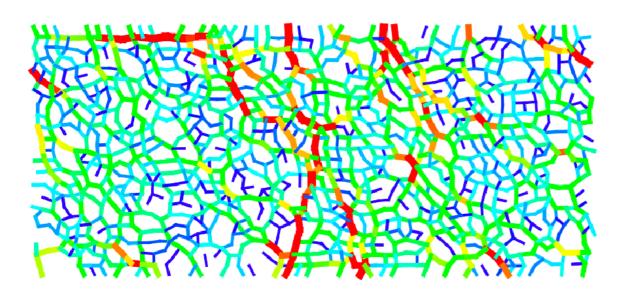
where Γ is the set of all the bijections between D_1 and D_2 and $||p - q||_{\infty} = \max(|x_p - x_q|, |y_p - y_q|).$

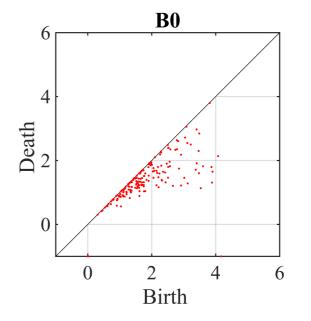
Some applications (illustrations)

- Persistence-based clustering [C.,Guibas,Oudot,Skraba - J. ACM 2013]



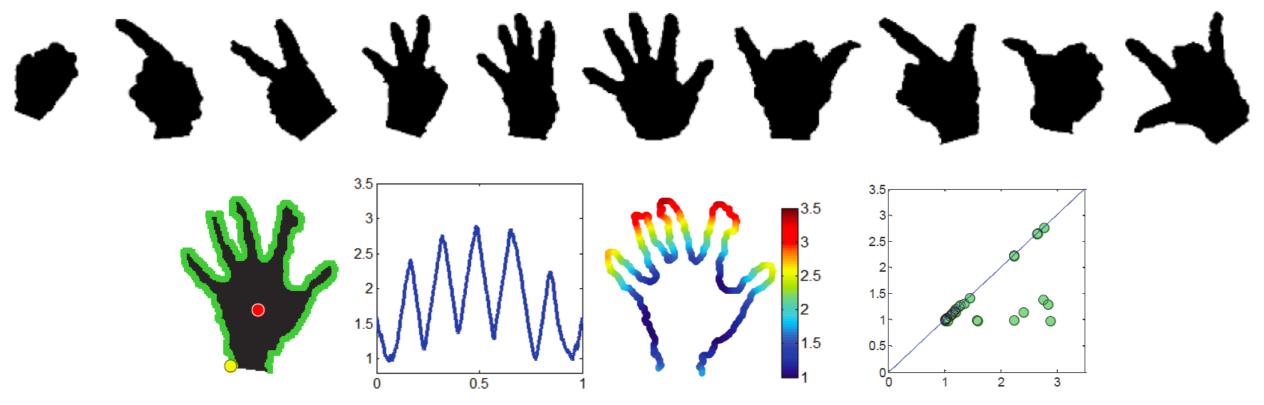
- Analysis of force fields in granular media [Kramar, Mischaikow et al]



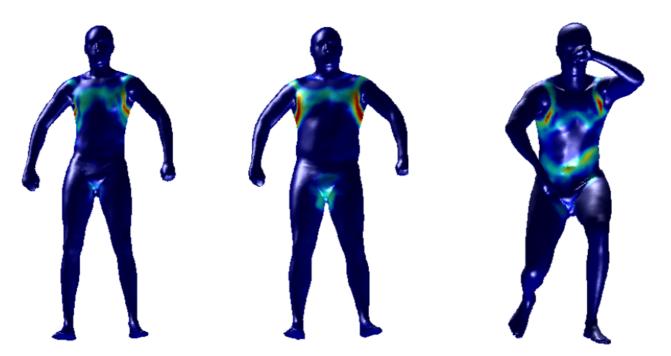


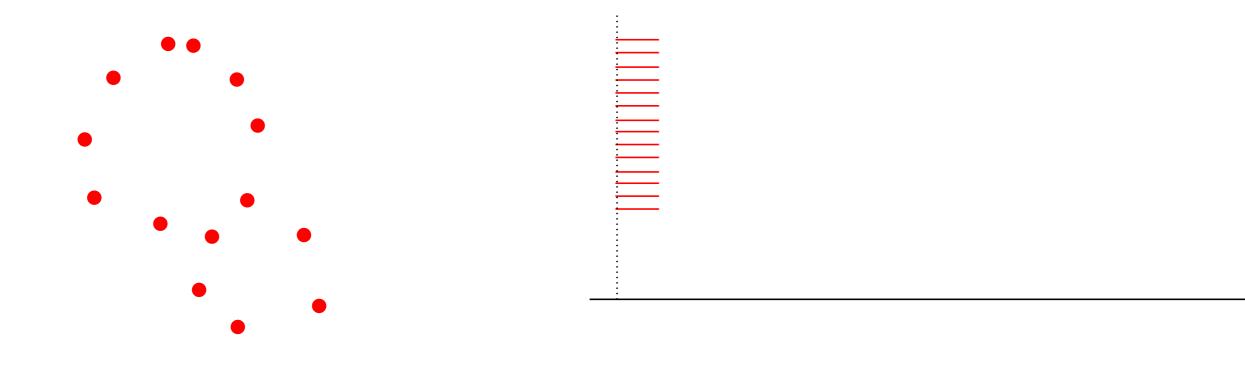
Some applications (illustrations)

- Hand gesture recognition [Li, Ovsjanikov, C. - CVPR'14]

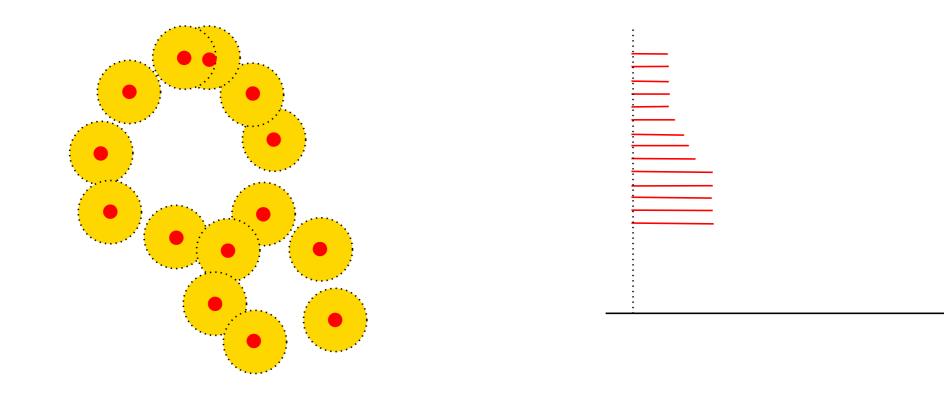


- Persistence-based pooling for shape recognition [Bonis, Ovsjanikov, Oudot, C. 2016]

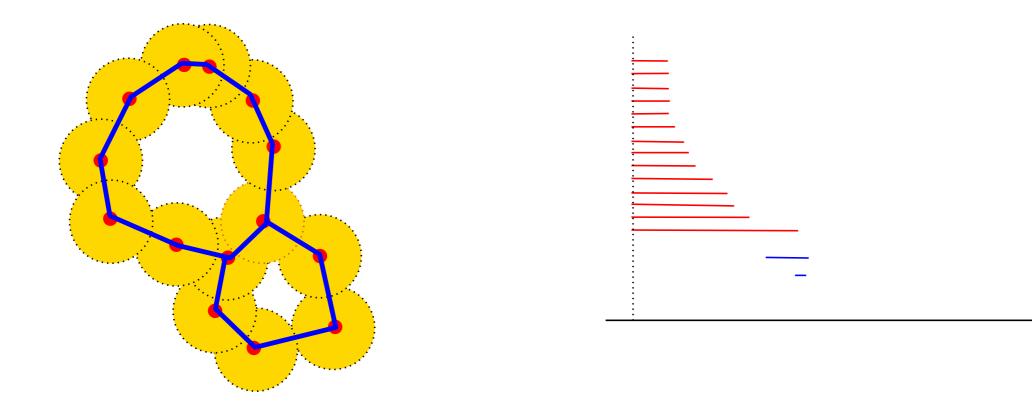




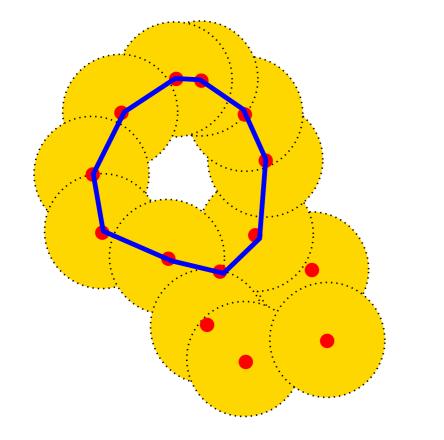
- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

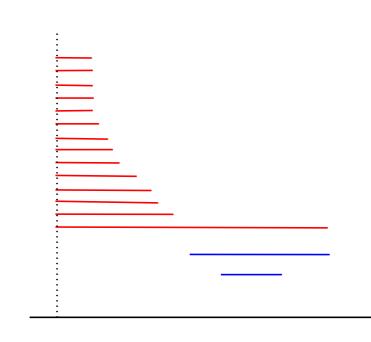


- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

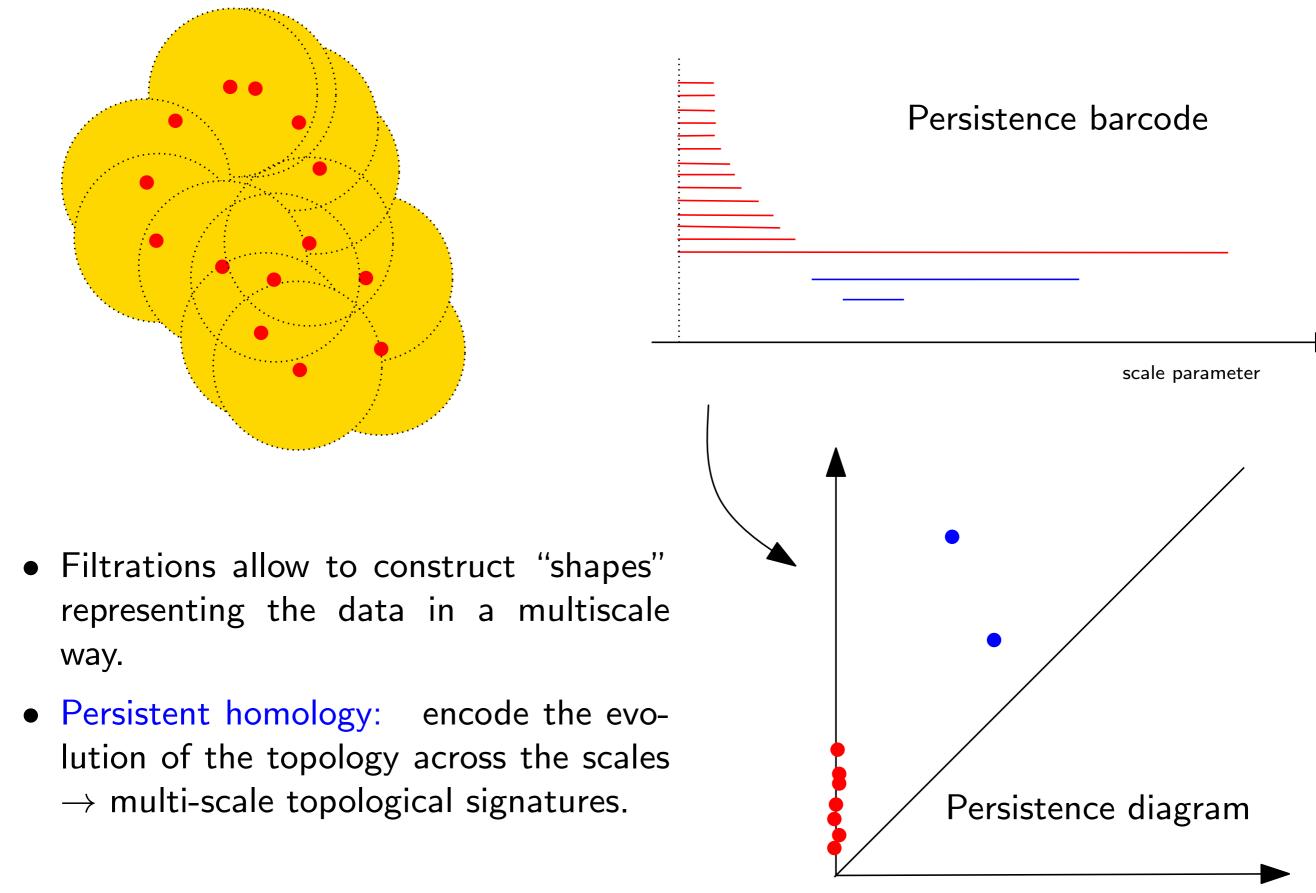


- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.

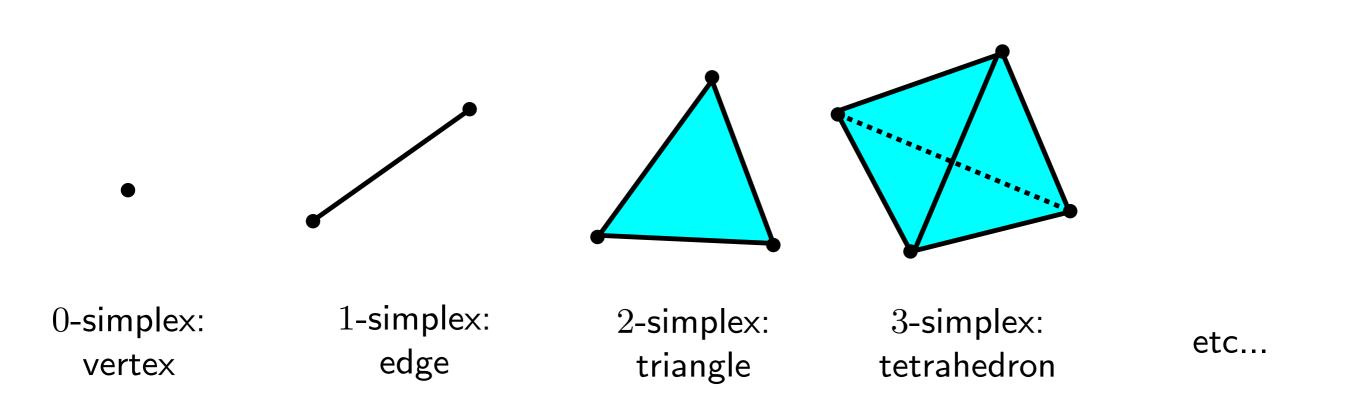




- Filtrations allow to construct "shapes" representing the data in a multiscale way.
- Persistent homology: encode the evolution of the topology across the scales
 → multi-scale topological signatures.



Simplicial complexes

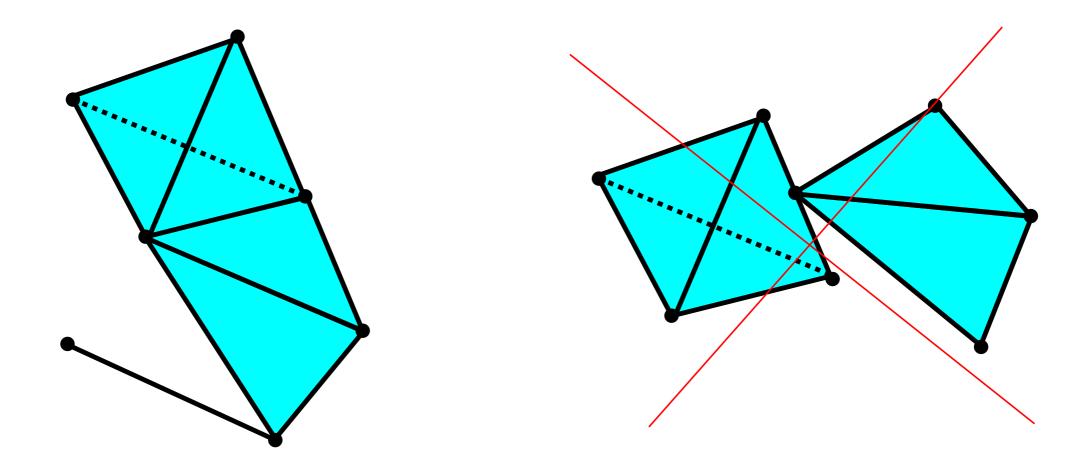


Given a set $P = \{p_0, \ldots, p_k\} \subset \mathbb{R}^d$ of k + 1 affinely independent points, the *k*-dimensional simplex σ , or *k*-simplex for short, spanned by P is the set of convex combinations

$$\sum_{i=0}^{k} \lambda_i p_i, \quad \text{with} \quad \sum_{i=0}^{k} \lambda_i = 1 \quad \text{and} \quad \lambda_i \ge 0.$$

The points p_0, \ldots, p_k are called the vertices of σ .

Simplicial complexes



A (finite) simplicial complex K in \mathbb{R}^d is a (finite) collection of simplices such that:

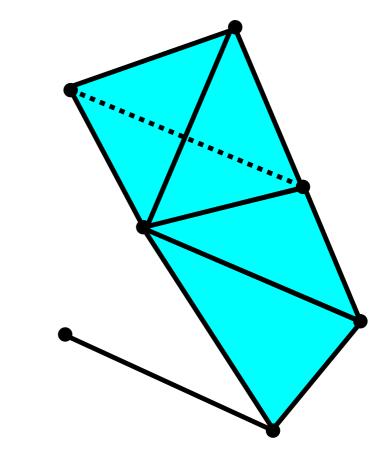
- 1. any face of a simplex of K is a simplex of K,
- 2. the intersection of any two simplices of K is either empty or a common face of both.

The underlying space of K, denoted by $|K| \subset \mathbb{R}^d$ is the union of the simplices of K.

Abstract simplicial complexes

Let $P = \{p_1, \dots, p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions :

- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.



The elements of K are the simplices.

Let $\{e_1, \dots e_n\}$ a basis of \mathbb{R}^n . "The" geometric realization of K is the (geometric) subcomplex |K| of the simplex spanned by $e_1, \dots e_n$ such that:

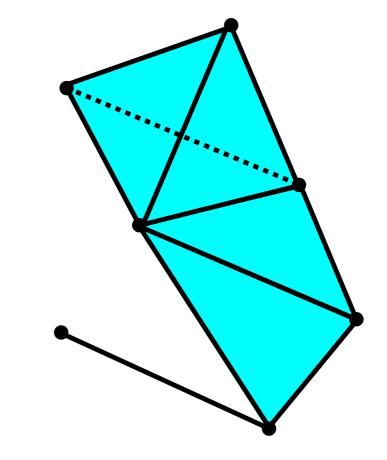
$$[e_{i_0}\cdots e_{i_k}]\in |K| \text{ iff } \{p_{i_0},\cdots,p_{i_k}\}\in K$$

|K| is a topological space (subspace of an Euclidean space)!

Abstract simplicial complexes

Let $P = \{p_1, \dots, p_n\}$ be a (finite) set. An abstract simplicial complex K with vertex set P is a set of subsets of P satisfying the two conditions :

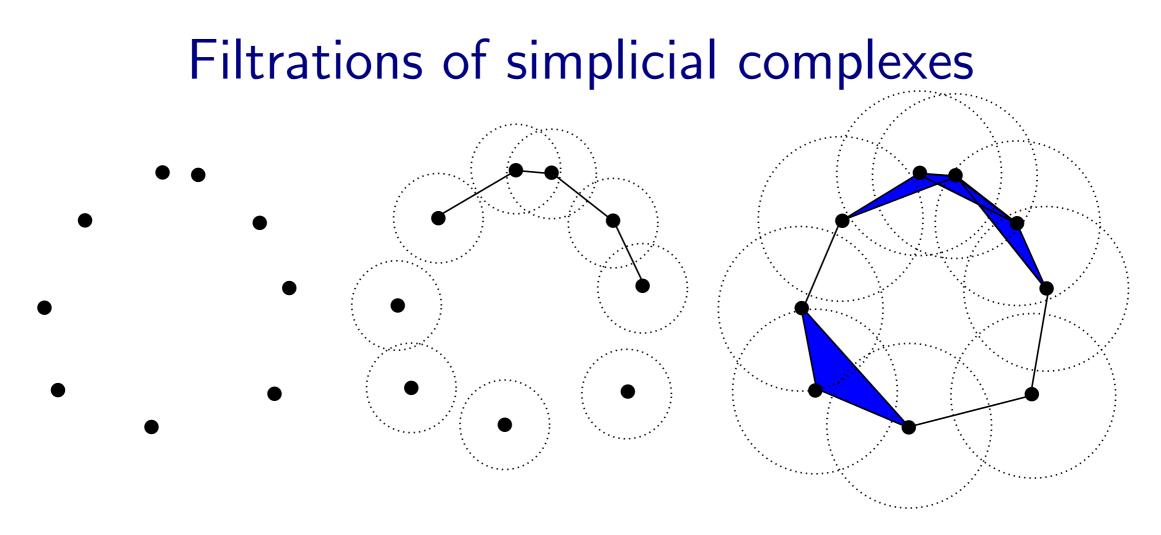
- 1. The elements of P belong to K.
- 2. If $\tau \in K$ and $\sigma \subseteq \tau$, then $\sigma \in K$.



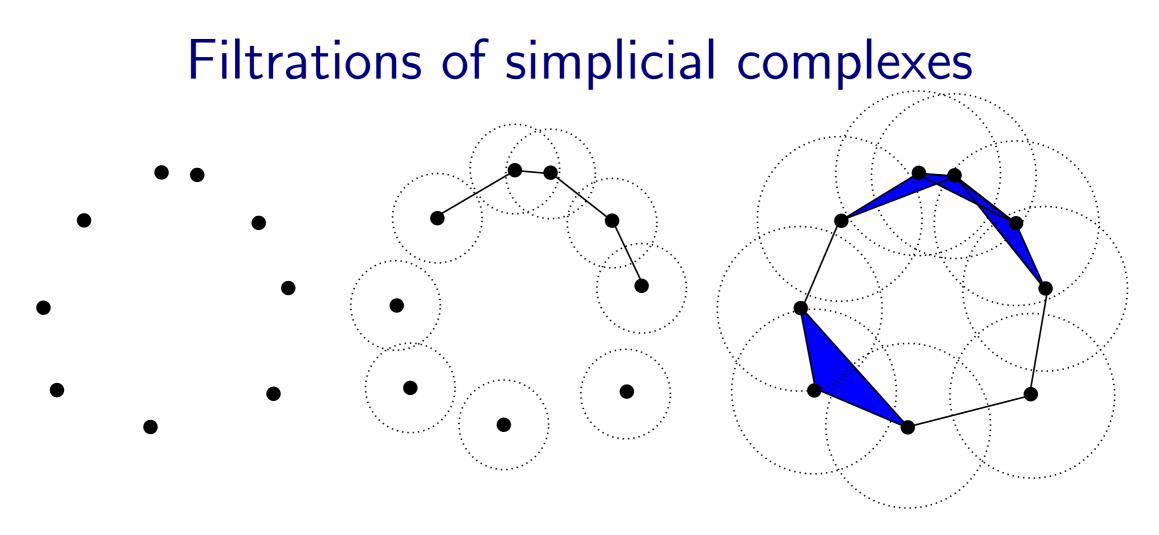
The elements of K are the simplices.

IMPORTANT

Simplicial complexes can be seen at the same time as geometric/topological spaces (good for top./geom. inference) and as combinatorial objects (abstract simplicial complexes, good for computations).



- A filtered simplicial complex (or a filtration) S built on top of a set X is a family (S_a | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X s. t. S_a ⊆ S_b for any a ≤ b.
- More generaly, filtration = nested family of spaces.

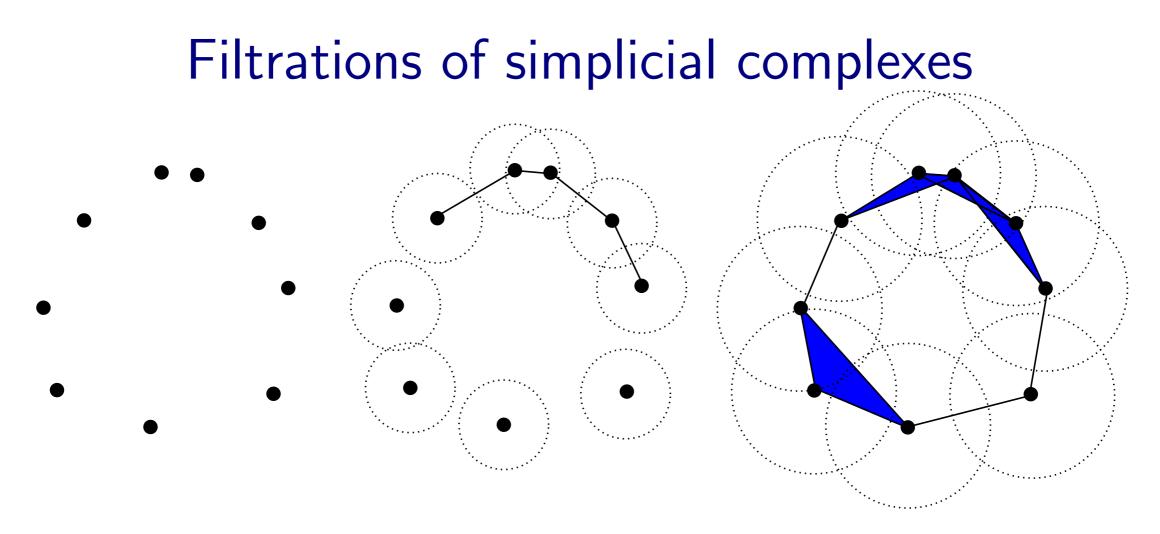


- A filtered simplicial complex (or a filtration) S built on top of a set X is a family (S_a | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X s. t. S_a ⊆ S_b for any a ≤ b.
- More generaly, filtration = nested family of spaces.

Example: Let (X, d_X) be a metric space.

• The Vietoris-Rips filtration is the filtered simplicial complexe defined by: for $a \in \mathbf{R}$,

 $[x_0, x_1, \cdots, x_k] \in \operatorname{Rips}(\mathbb{X}, a) \Leftrightarrow d_{\mathbb{X}}(x_i, x_j) \leq a, \text{ for all } i, j.$



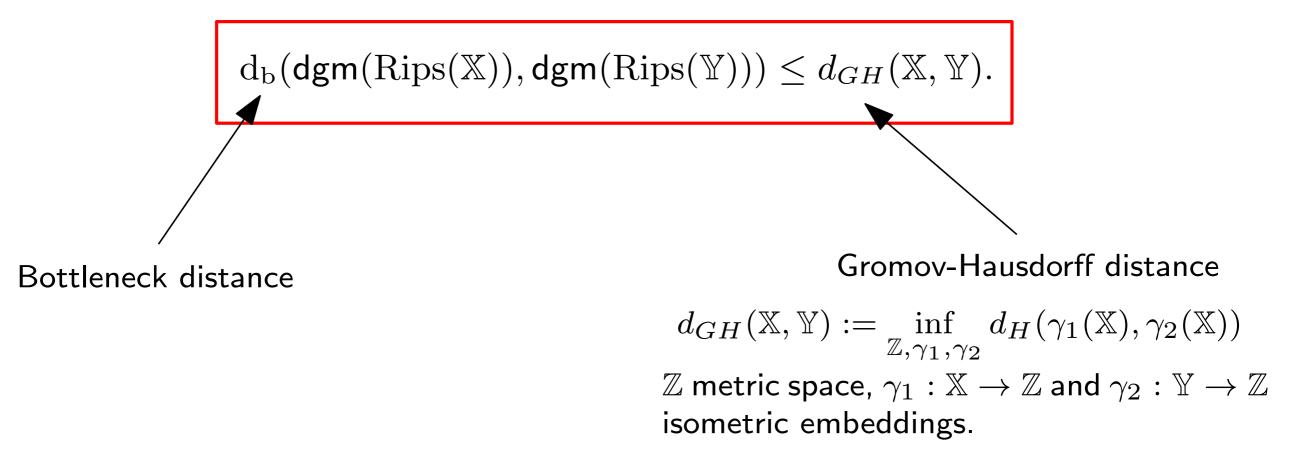
- A filtered simplicial complex (or a filtration) S built on top of a set X is a family (S_a | a ∈ R) of subcomplexes of some fixed simplicial complex S with vertex set X s. t. S_a ⊆ S_b for any a ≤ b.
- More generaly, filtration = nested family of spaces.

Many other examples and ways to design filtrations depending on the application and targeted objectives : sublevel and upperlevel sets, Čech complex,...

Stability properties

"Stability theorem": Close spaces/data sets have close persistence diagrams! [C., de Silva, Oudot - Geom. Dedicata 2013].

If $\mathbb X$ and $\mathbb Y$ are pre-compact metric spaces, then

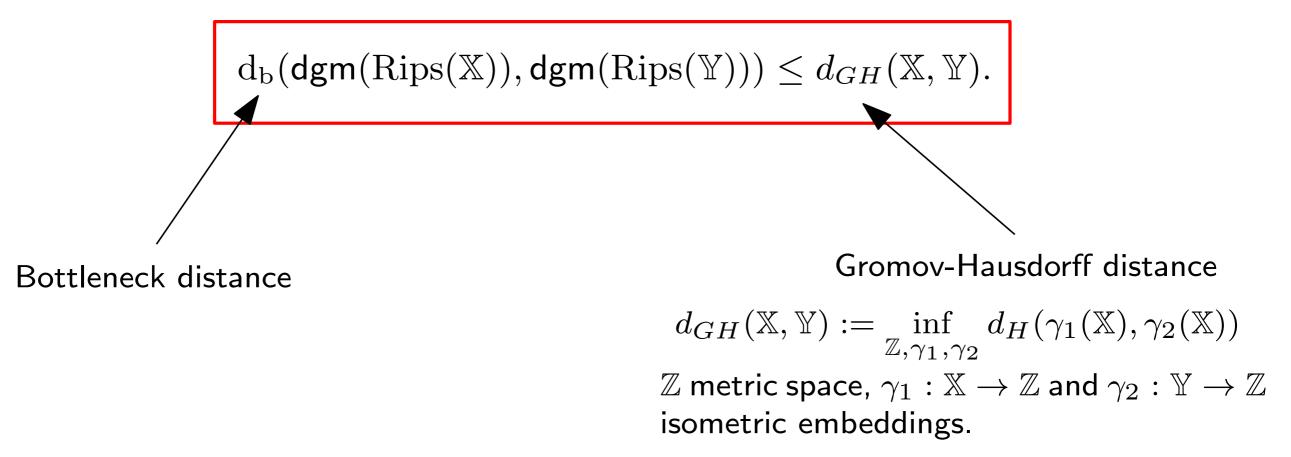


Rem: This result also holds for other families of filtrations (particular case of a more general thm).

Stability properties

"Stability theorem": Close spaces/data sets have close persistence diagrams! [C., de Silva, Oudot - Geom. Dedicata 2013].

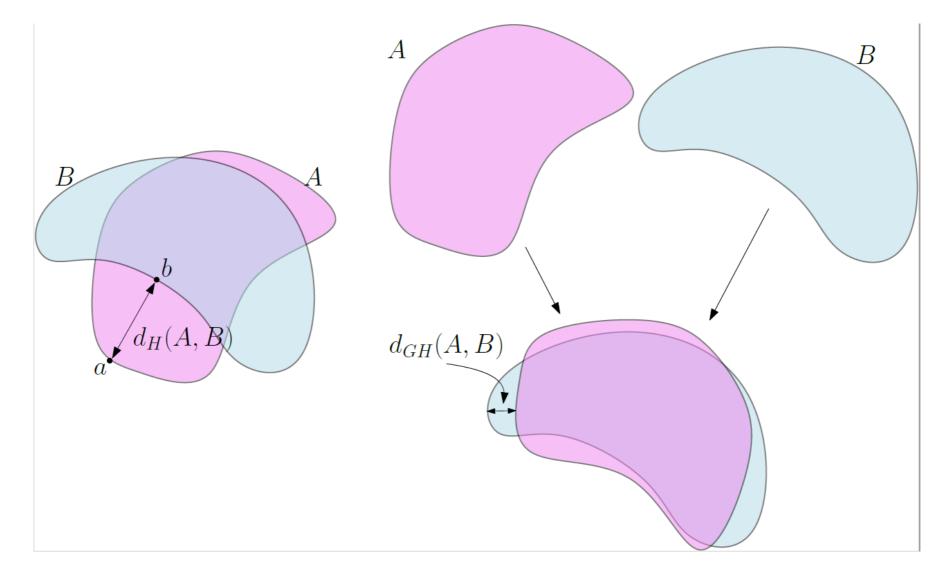
If $\mathbb X$ and $\mathbb Y$ are pre-compact metric spaces, then



Rem: This result also holds for other families of filtrations (particular case of a more general thm).

From a statistical perspective, when X is a random point cloud, such result links the study of statistical properties of persistence diagrams to support estimation problems.

Hausdorff distance



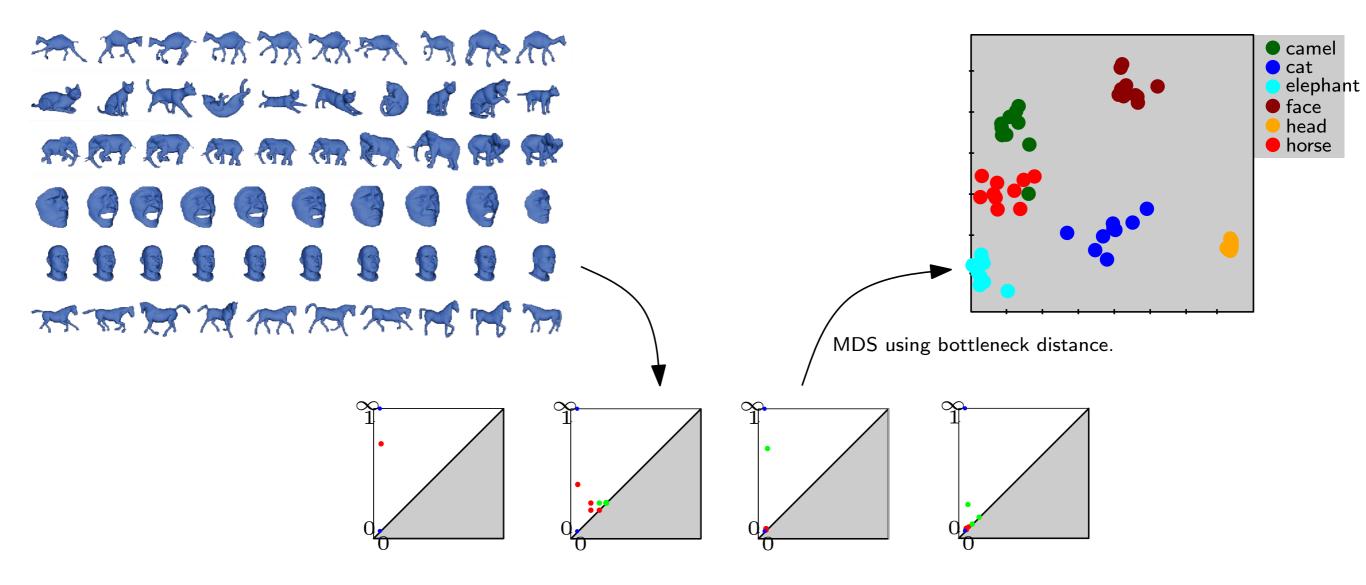
Let $A, B \subset M$ be two compact subsets of a metric space (M, d)

$$d_H(A,B) = \max\{\sup_{b\in B} d(b,A), \sup_{a\in A} d(a,B)\}$$

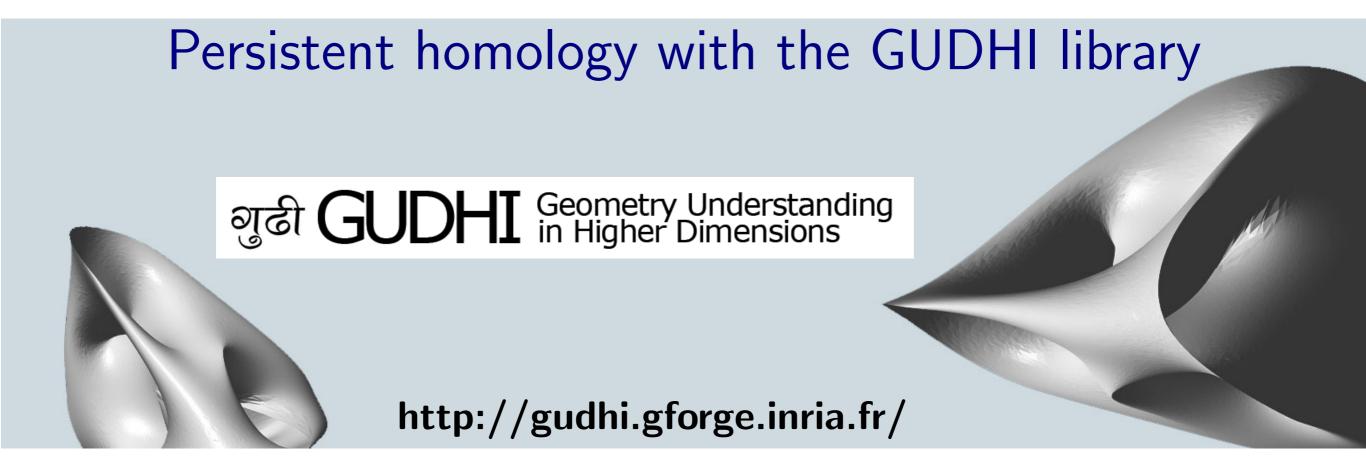
where $d(b, A) = \sup_{a \in A} d(b, a)$.

Application: non rigid shape classification

[C., Cohen-Steiner, Guibas, Mémoli, Oudot - SGP '09]



- Non rigid shapes in a same class are almost isometric, but computing Gromov-Hausdorff distance between shapes is extremely expensive.
- Compare diagrams of sampled shapes instead of shapes themselves.

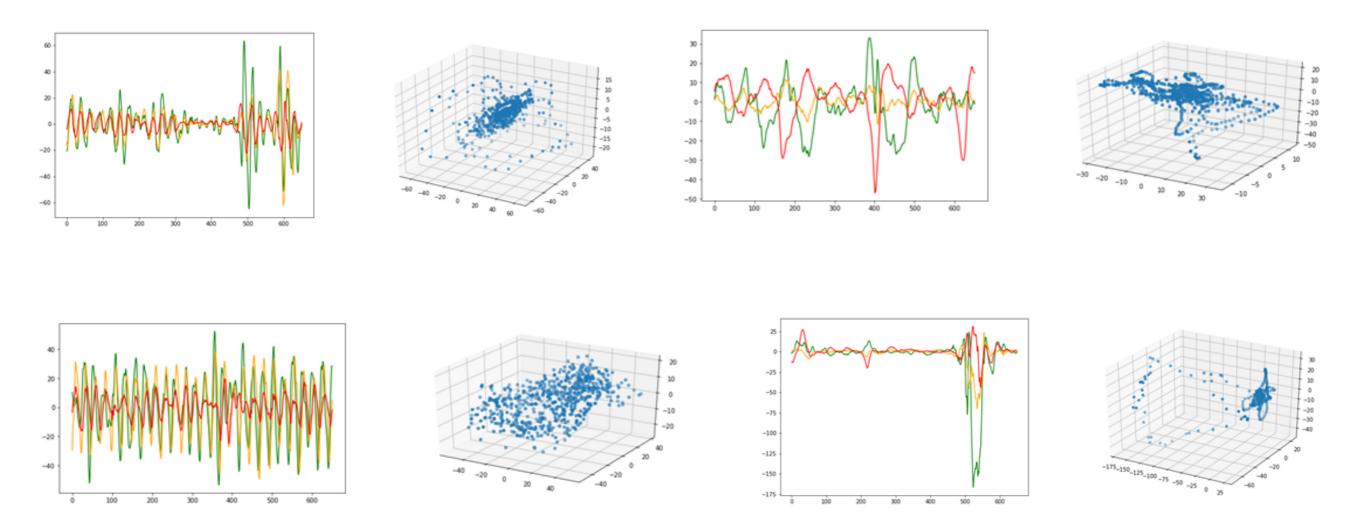


GUDHI :

- a C++/Python open source software library for TDA,
- a developers team, an editorial board, open to external contributions,
- provides state-of-the-art TDA data structures and algorithms : design of filtrations, computation of pre-defined filtrations, persistence diagrams,...
- part of GUDHI is interfaced to R through the TDA package.

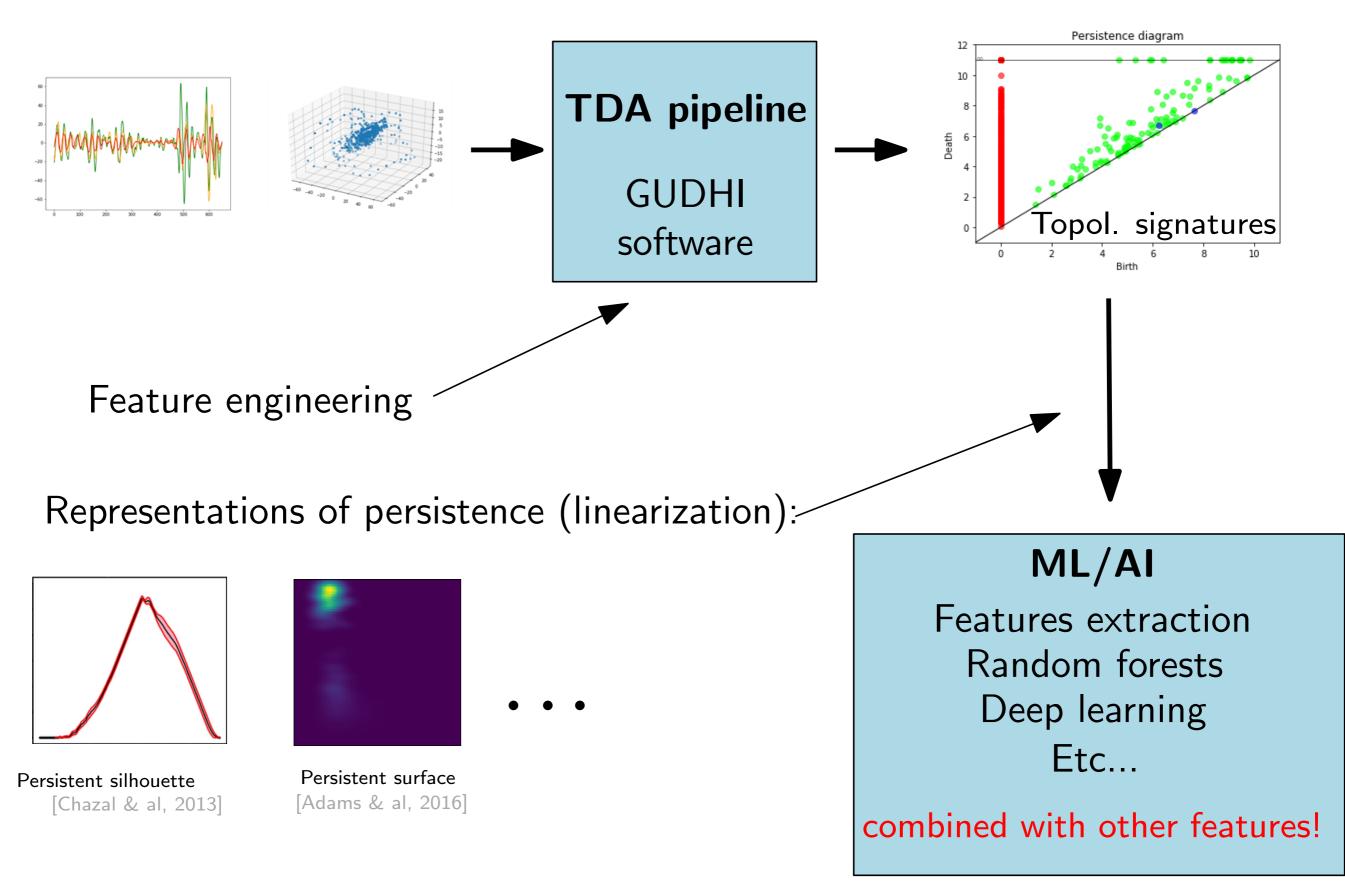
TDA and Machine Learning: some illustrative examples on real applications

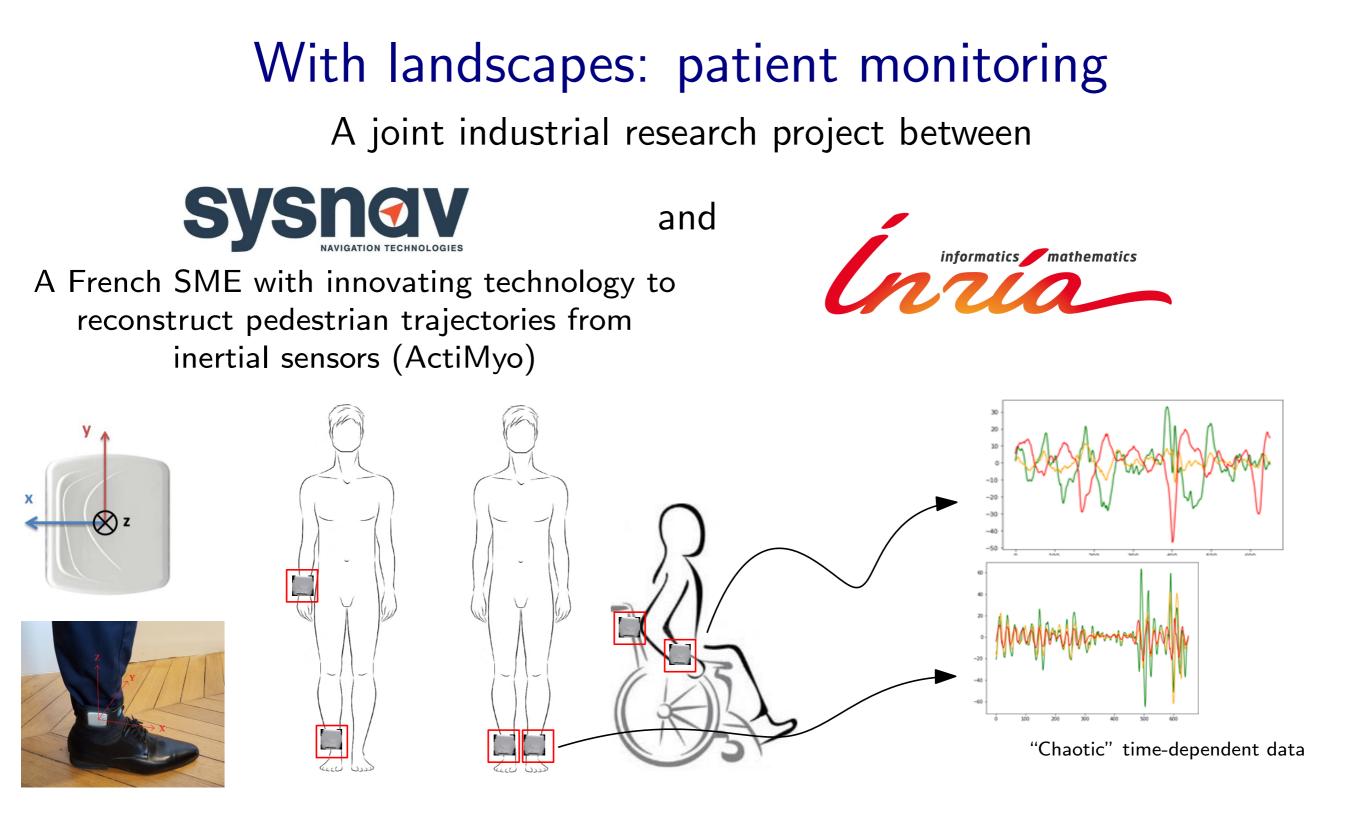
TDA and Machine Learning for sensor data



(Multivariate) time-dependent data can be converted into point clouds: sliding window, time-delay embedding,...

TDA and Machine Learning for sensor data

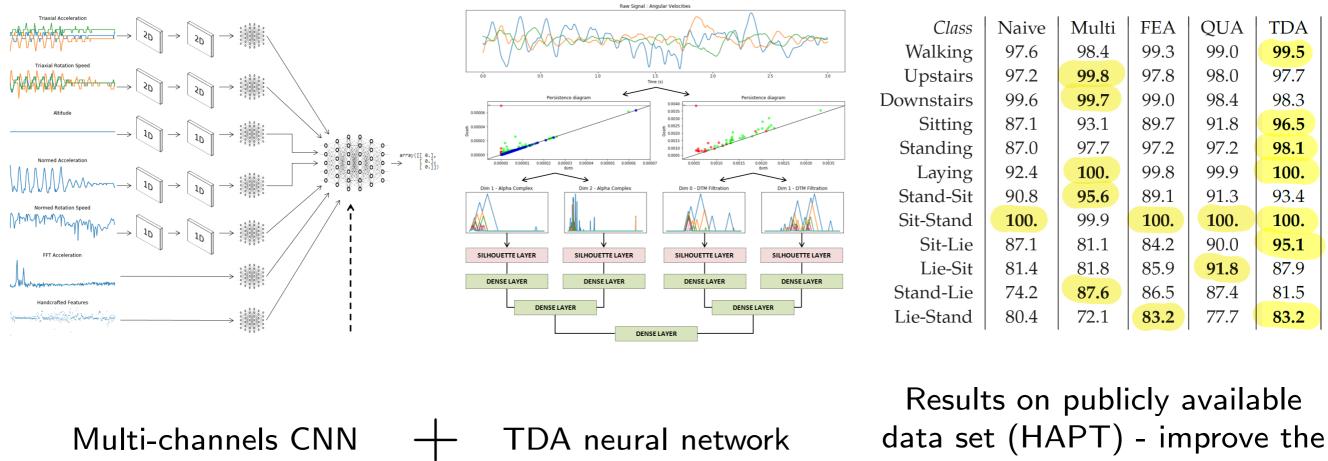




Objective: precise analysis of movements and activities of pedestrians. **Applications:** personal healthcare; medical studies; defense.

With landscapes: patient monitoring

Example: Dyskinesia crisis detection and activity recognition:

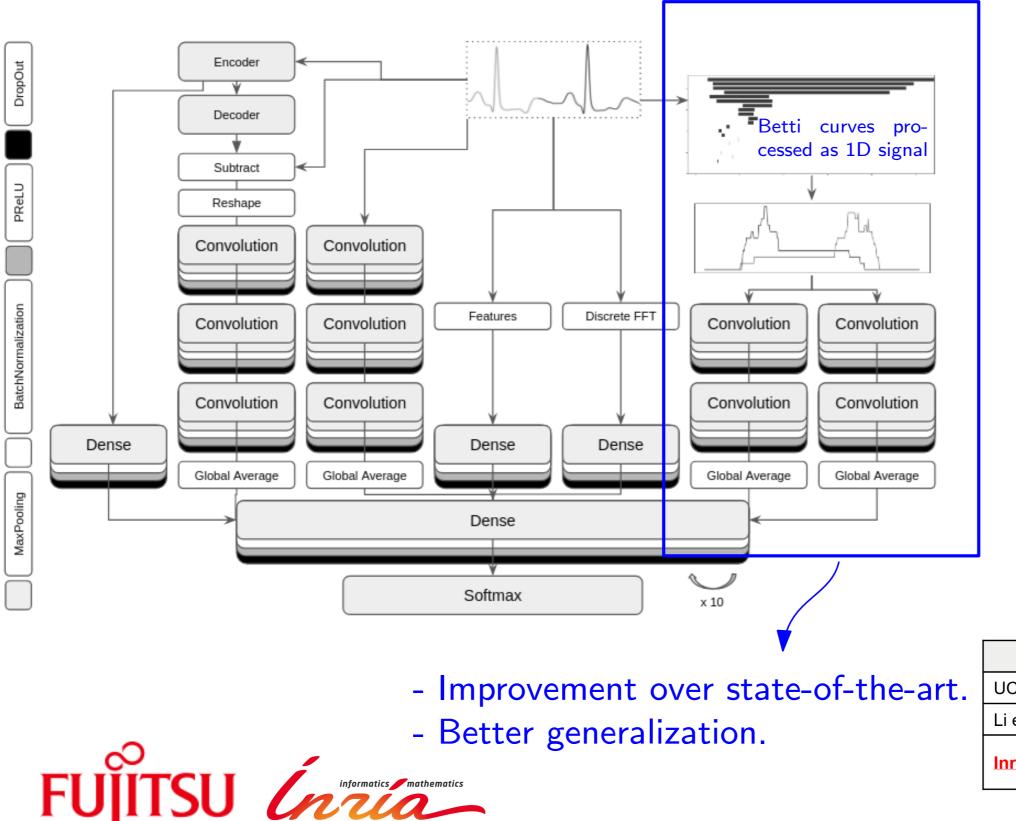


state-of-the-art.

- Data collected in non controlled environments (home) are very chaotic.
- Data registration (uncertainty in sensors orientation/position).
- Reliable and robust information is mandatory.
- Events of interest are often rare and difficult to characterize.

TDA-DL pipeline for arrhythmia detection

Objective: Arrythmia detection from ECG data.



	Accuracy[%]
UCLA (2018)	93.4
Li et al. (2016)	94.6
Inria-Fujitsu (2018)*	98.6

Thank you for your attention!