
Operations research and machine learning

CERMICS
Axel Parmentier

May 16th, 2019 IRT SystemX
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Traveling salesman problem

Is there an optimal solution?

Yes: finite set of solution

Can we enumerate all the solutions?

With 25 cities, we have 24! = 24× 23× 22× · · · × 2× 1 possibilities, that
is, around 6.204× 1025 possibilities.

Using paper and pencil, testing 1 possibility per second, requires around
1.976× 1016 years.

Testing 1 million possibilities per second with a computer, requires 19
billion years.
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What is Operations Research?

The traveling salesman problem is one of the most famous Operations
Research problem.

Operations Research (OR):
mathematical discipline that deals with the optimal allocation of resources
(typically in firms).

mathematical part of decision science
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Examples of Operations Research problems

• Find the best tour
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• Plan the best timetable

• Find the most resilient network

• Fill a container optimally

• Locate facilities/warehouses optimally

• Schedule jobs on machines
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Operations Research in practice

Operations Research in practice:

1. Model the question studied as an optimization

2. Choose/design an algorithm to solve the optimization problem

3. Interpret the results

Roughly speaking:

I OR researchers focus on 2

I OR engineers / users know which algorithms work for 2 and spend their
time on 1 and 3

Scope of applications of the field: its versatile and powerful algorithms
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Operations Research tools 1: exact algorithm

Mixed integer linear programming

min cx
s.t. Ax = b

x ∈ Rn
+ × Zp

+
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MILP with up to 106 variables solved to optimality in the industry
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Operations research tools 2: heuristics

Define a neighborhood to replace gradient
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What is Machine Learning

Machine learning uses data to:

1. extract information from data (unsupervised learning)

“There is A and B”

2. make predictions (supervised learning)

“If A happens, then B with happen”

3. take decisions (reinforcement learning)

“If I want B to happen, then I should do A”

Which of OR and ML has the largest scope?
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ML vs OR beauty pageant

Google trends data (popularity = proportion of the research)
Machine Learning (blue) vs Operations Research (red)
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Trendy does not mean relevant: ML is not the king of prediction

Machine learning (blue) vs horoscope (red)
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Why trends matters

Many “artificial intelligence” problems are operations research problems.

Many firms don’t known the existence of OR:

I hire ML consultants that don’t know OR on OR problems
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At peak expectations?

ML takes today our projects / students, can we just wait that ML gets
old-fashioned?
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ML is more than a trend: years at peak expectations

2015
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ML is more than a trend: years at peak expectations

2018
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Basic machine learning should be in the toolbox of all scientists

Today:

I Experience is at the heart of scientific method to validate model

I Basic statistics is an important skill for every scientist/engineer

Machine Learning provides statistics tools for the age of big data.

I Data won’t disappear

I Making predictions will remain at the heart of scientific method

I Machine Learning provides “user friendly default methods”
I Basic machine learning will be:

I an important skill for every scientist/engineer
I required in the toolbox of the OR practitioner
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Basic optimization in the toolbox of all engineers / decision makers

Whether you want to

I implement your strategy

I learn from the data

I approximate your partial differential equation

I etc.

in the end, you will want to find a good/the best solution.

and if you problem is of (even moderately) large scale:

I need an optimization algorithm

I need operations research if your problem is discrete
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Machine Learning and Operations Research

Today talk on what happens at the crossroad of OR and ML

1. OR for ML

2. ML for OR

3. Data driven optimization
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OR for ML: Optimization and Learning

Machine learning in practice:

I Model the problem using a statistical model (e.g. neural network)

I Learn the model = solve an optimization problem

I Interpret the results
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Mathematical programming at the cross-road of OR and ML

“Learning” in ML:

I Modeling: formulate an optimization problem (with good statistical
properties)

I Optimization: solve it

Bertsimas “Machine Learning under a Modern Optimization Lens” papers

http://www.mit.edu/∼dbertsim/papers.html#MachineLearning
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Mathematical programming at the cross-road of OR and ML

“Learning” in ML:

I Modeling: formulate an optimization problem (with good statistical
properties)

I Optimization: solve it

ML “good algorithms”:

I good generalization,

I simple and easy implementation,

I fast convergence to an
approximate solution

OR “good algorithms”:

I optimality / solution quality

I apply to a wide class of problem
(MILP)

I speed

And many shared objectives: scalability to large problems, fast convergence
to an approximate solution
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Table of Content

1. Machine Learning problems

2. Machine learning to speed-up your optimization algorithm

3. Probabilistic graphical models for data driven optimization
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Part content

1. Machine Learning problems
1.1 Unsupervised learning
1.2 Supervised learning
1.3 Reinforcement learning

2. Machine learning to speed-up your optimization algorithm

3. Probabilistic graphical models for data driven optimization
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Unsupervised learning

Given samples of data x1, . . . , xn in Rn, detect some structure in the data

I Clustering

I Dimensionality reduction

I Learning a distribution.

I Anomaly detection

I Generative Adversarial Networks

I etc.

Extract structure from the data
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Clustering

Given x1, . . . , xn in Rd , partition them into k clusters of “similar” points.
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Clustering

Given x1, . . . , xn in Rd , partition them into k clusters of “similar” points.

Compare different methods on your dataset using sci-kit learn
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Supervised learning problem

Use previously seen data (x1, y1), . . . , (xn, yn) to

predict y given a new x

Practically
y = fθ(x)

with fθ in a statistical model
{
fθ, θ ∈ Θ

}
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Supervised learning problem

Use previously seen data (x1, y1), . . . , (xn, yn) to

predict y given a new x

Practically
y = fθ(x)

with fθ in a statistical model
{
fθ, θ ∈ Θ

}
Learning the problem: find θ

min
θ

n∑
i=1

‖yi − fθ(xi )‖2
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Output types and supervised learning problems

Given (x1, y1), . . . , (xn, yn), learn

y = fθ(x)

Quantitative variables

X ∈ R or in a subset of R
Qualitative variables

X in a non-ordered finite set.

I Quantitative or qualitative inputs: pre-processing

I Quantitative or qualitative outputs: influence the learning method

Output type Quantitative Qualitative

Problem type Regression Classification

Binary classification, where y ∈ {0, 1}, is especially useful
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Inputs and supervised learning problem

y = fθ(x)

Kind of x that can be used:

I vectors in Rd

I qualitative variables

I time series

I images

I videos

I graphs

In practice:

tune you features φk(x):

y =
∑
k

θkφk(x)

use sparse learning (e.g. lasso) to identify the most relevant features

min
θ

n∑
i=1

‖yi − fθ(xi )‖2 + λ|θ|
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Reinforcement learning

A problem that you can model by dynamic programming

Vt(x) = max
a

∑
x ′

p(x , x ′)
(
c(x , a, x ′) + Vt+1(x ′)

)
but not solve because x lives in an exponentially large state space

Reinforcement learning is an approximate dynamic programming method
that

I uses an value function of the form fθ(x) ' Vt(x)

I learn θ through simulation
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Part content

1. Machine Learning problems

2. Machine learning to speed-up your optimization algorithm
2.1 ML to guide heuristics
2.2 Supervised learning for MILP

3. Probabilistic graphical models for data driven optimization
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Main message

Machine Learning can predict many interesting informations that you can
exploit in your solution schemes.

Today, examples on:

I Heuristics

I MILPs
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Learn the structure of the instance for cheap initialization

Many OR problems are partitioning problems

I sometimes, a rather good heuristic can be found using clustering

I initialize a heuristic
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Learning parameters: well known in the heuristics toolbox

Learning where to initialize a local search
I Zhou, Y., Hao, J. K., & Duval, B. (2016). Reinforcement learning based local search for

grouping problems: A case study on graph coloring. Expert Systems with Applications, 64,
412-422.

I Initialize a solution with a given prior probability

I Run a local search form this initial solution

I Update the prior probability

Learning which neighborhood to use in a large neighborhood search

Many of these ideas already in
I Gardi, F., Benoist, T., Darlay, J., Estellon, B., & Megel, R. (2014). Mathematical

Programming Solver Based on Local Search. John Wiley & Sons.
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Learn where to search in local search

Learning property of good solutions enables to know where to search.

Heuristics for the VRP:
I Arnold, F., & Sörensen, K. (2018). What makes a VRP solution good? The generation of

problem-specific knowledge for heuristics. Computers & Operations Research.

I Arnold, F., & Sörensen, K. (2019). Knowledge-guided local search for the vehicle routing
problem. Computers & Operations Research, 105, 32-46.

Methodology:

I Generate a large set of instances and feasible solutions

I Train a supervised learning classifier to predict if a feasible solution is
near optimal or not

I Use this knowledge to guide local-search
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Supervised learning prediction on MILPs

min cx

s.t. Ax ≤ b

x ∈ Zd × Rn−d

Can we predict accurately:

I Optimal solution of MILPs?

no

I Value of MILPs? no

I Solution time? no

or at least not yet

Use supervised learning to
predict in fractions of a second
interesting statistics on MILPs

Survey:
I Bengio, Y., Lodi, A., & Prouvost, A. (2018). Machine Learning for Combinatorial

Optimization: a Methodological Tour d’Horizon. arXiv preprint arXiv:1811.06128.
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What can we predict on general MILPs ?

Before launching the solver: interesting parameters

I Which Dantzig-Wolfe decomposition should be used?
Kruber, M., Lübbecke, M. E., & Parmentier, A. (2017, June). Learning when to use a
decomposition. In International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (pp. 202-210). Springer, Cham.

After a fraction of the solver time:

I If the solver will prove optimality within the time limit:
Fischetti, M., Lodi, A., & Zarpellon, G. (2018). Learning MILP Resolution Outcomes Before
Reaching Time-Limit.

Heuristic decisions all along the solution scheme:

I Learning where and how to branch:
Lodi, A., & Zarpellon, G. (2017). On learning and branching: a survey. TOP, 25(2), 207-236.
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Example: learning to decompose

A MILP P:

min cx
s.t. Ax = b

x ∈ Rn
+ × Zp

+

I DWR for Mixed Integer
Programs

I Solved by column
generation

Figure: Decomposition D of P
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•
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•

•

•

•

•

•
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•
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•
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•

Figure: Tighter relaxation
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Automatic Decomposition in GCG

MIP P Detection DEC D2

DEC D1

DEC Dk

. . .
DWR? Select GCG

SCIP
no

yes

A MIP can be forced in several types of decomposition:

I Border I Staircase I etc.

GCG performance highly depends on how well the decomposition catches
the problem structure.

Our work: a supervised learning approach to select the best decomposition
(using no decomposition is often the best answer).
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Supervised learning binary classification problem

Binary classification problem

If it remains solution time t, is it better to solve using GCG with D or to
use SCIP (no decomposition)?

Input
(P,D, t)

Features vector
φ(P,D, t) ∈ Rd

Output
fθ (φ (P,D, t))

Feature

map φ

Classifier

fθ

Choose f family
Learn θ

Define φ
more than 80 features
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If it remains solution time t, is it better to solve using GCG with D or to
use SCIP (no decomposition)?

Input
(P,D, t)

Features vector
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Output
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Define features φ

Examples of features used:

I Time t

I Nb variables/constraints

I Variable types

I Constraint types

I Products of features

I Nb linking variables /
constraints

I Nb blocks

I min, max, mean block size

I Detector used (indicator)

I Detection quality metrics

GCG decomposition selection tool uses empirical detection quality metrics.
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Learn the problem: generate database

I database

I python interface

I SCIP version 3.2.1, GCG 2.1.1.
i7-2600 3.4GHz PC,
8MB cache, 16GB RAM

I ∼ 135 days computing time

Crucial part, because a supervised
learning scheme will work on certain
kinds of inputs only if such inputs are
in the training set

Instances SCIP runs

Detectors

Decompositions

Settings

GCG runs

Database Schema
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Distribution of Instances

SCIP structured non-str
results all clr stcv cpmpsdlb ctst gap ntlb ltsz bp rap stbl cvrp miplib
instances 400 25 25 25 25 25 25 25 25 25 25 25 25 100
opt. sol. 65.5% 19 3 18 10 25 23 25 25 6 12 22 6 68
feas. sol. 31.5% 6 21 7 11 - 2 - - 19 12 3 19 26
no sol. 3.0% - 1 - 4 - - - - - 1 - - 6

Structured Instances

coloring (clr)
set covering (stcv)
capacitated p-median (cpmp)
survivable fixed telecom
network design (sdlb)
cutting stock (ctst)
generalized assignment (gap)

network design (ntlb)
resource allocation (rap)
capacitated vehicle routing (cvrp)
lot sizing (ltsz)
bin packing (bp)
stable set (stbl)
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Splitting Training and Testset

Reminder: datapoints (P,D, t)

Split training and test set by mip instances, to avoid a biased estimator.

Distribution of decompositions per MIP instance:

I Average: ∼ 15.3

I Standard Deviation: ∼ 9.0

Instances Decompositions

Training 269 (∼ 2/3) 4434

Test 131 (∼ 1/3) 2069
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Overall Performance

I Test set of 131 MIP instances, 99 structured and 32 unstructured.

I GCG better than SCIP on 34 instances.

Nearest neighbor classifier of scikit-learn library.

Instances All Structured Non-structured
Solver SCIP GCG SL OPTSCIP GCG SL OPTSCIP GCG SL OPT
No opt. sol. 52 66 44 39 39 37 31 26 13 29 14 13
CPU time (h) 111.3 142.6 93.1 85.7 83.5 82.2 65.9 58.5 27.8 56.8 29.2 27.2
Geo. mean (s) 127.1 370.4 78.6 67.8 73.4 146.9 39.2 32.2 672.9 5145.0 766.0 646.5

I SCIP: apply SCIP to all instances

I GCG: apply GCG with build-in selection tool

I SL: our supervised learning scheme

I OPT: best decomposition selected each time
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Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For (P,D, t): Is GCG on (P,D) better than SCIP on P?

All
instances

Structured Non-
structured

SCIP GCG SCIP GCG SCIP GCG
Classifier Pred. 74.0% 26.0% 68.7% 31.3% 90.6% 9.4%

RBF SCIP TN FN 7
Unbal. GCG FP TP 7
KNN SCIP 7

distance. GCG 7
RF SCIP 7

Unbal. GCG 7
RF SCIP 7
Bal. GCG 7
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All
instances

Structured Non-
structured

SCIP GCG SCIP GCG SCIP GCG
Classifier Pred. 74.0% 26.0% 68.7% 31.3% 90.6% 9.4%

RBF SCIP 73.3% 19.1% 66.7% 23.2% 90.6% 9.4%
Unbal. GCG 3.8% 3.8% 5.1% 5.1% 0.0% 0.0%
KNN SCIP 69.5% 9.9% 64.6% 11.1% 84.4% 6.3%

distance. GCG 6.9% 13.7% 7.1% 17.2% 6.3% 3.1%
RF SCIP 63.4% 11.5% 55.6% 13.1% 87.5% 6.3%

Unbal. GCG 10.7% 14.5% 13.1% 18.2% 3.1% 3.1%
RF SCIP 60.3% 10.7% 50.5% 11.1% 90.6% 9.4%
Bal. GCG 13.7% 15.3% 18.2% 20.2% 0.0% 0.0%

Axel Parmentier Operations research and machine learning May 10th, 2019 44 / 59



Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For (P,D, t): Is GCG on (P,D) better than SCIP on P?

On many supervised learning problems,

I a simple approach gives a quite good performance

I a much more involved approach does only slightly better

Keep it simple!
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We can predict more on specific problems

Suppose we have a tractable MILP formulation for some given problem.

Make fast predictions on new instances using supervised learning

Prediction of the value:
I Fischetti, M., & Fraccaro, M. (2018). Machine learning meets mathematical optimization to

predict the optimal production of offshore wind parks. Computers & Operations Research.

Predictions of (parts of) a good solution:
I Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2018).

Predicting solution summaries to integer linear programs under imperfect information with
machine learning. arXiv preprint arXiv:1807.11876.

I Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2019).
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information.
arXiv preprint arXiv:1901.07935.
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Research perspectives

In many industrial context, solve every day variants of the same problem

I We have an exact MILP solver

I Too slow for operational use

Can we combine OR and ML to have a better solver?

Bayesian optimization for advanced parameter selection?

Can use reinforcement learning to learn along a branching scheme ?
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Part content

1. Machine Learning problems

2. Machine learning to speed-up your optimization algorithm

3. Probabilistic graphical models for data driven optimization
3.1 A motivating example from airline operations
3.2 Probabilistic graphical models
3.3 Influence diagrams
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Data driven optimization

Machine learning uses data to:

3. take decisions (reinforcement learning)

“If I want B to happen, then I should do A”

I Operations Research is decision science (originally without data)

I Data changes our problem

Taking decisions based on data requires to tackle with

I data (ML)

I curse of dimensionality (OR)
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A predictive maintenance problem

Maintenance slot

Failures

Maintenance slot

Replace Keep

Fly Fly Fly

Flight leg

Data available: airplane signals recorded at 1 Hz. Previous failures.

Objective : Find an optimal maintenance planning minimizing the
expected costs
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Probabilistic graphical models – definition and inference problem

A distribution (Xv )v∈V factorizes as a directed
graphical model on a digraph D = (V ,A) if

P(XV = xV ) =
∏
v∈V

pv |prt(v)(xv , xprt(v))

where D is acyclic and

P(Xv = xv |Xprt(v) = xprt(v)) = pv |prt(v)(xv |xprt(v))

Example:

I battery b

I fuel f

I lights `

I engine start s

b f

` s

Inference problem: compute E(f (Xv )) or P(Xv = xv |XE = xE ).

Example: probability that the fuel tank is empty given that lights work and
engine does not start?
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Richer example of Inference problem

New York Paris

plane `1

crew `2

`

t

w1

w2

∏
v∈V

pv |prt(v)

We cannot hope to work directly with µV (xV ) = P(XV = xV )
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Inference as optimization

As V is large, work with collection of moments µC with |C | small

M =

{
(µC )C∈V : : ∃µV , ∀C , ∀xC , µC (xC ) =

∑
xV\C

µV (xC , xV \C )

}

Theorem (e.g. Theorem 3.4 in Wainwright and Jordan (2008))

Denoting θ = (log(pv |prt(v))), an optimization solution µ∗ of the convex
optimization problem

max
µ∈M
〈θ|µ〉+ H(µ)

is such that P(XC = xc) = µC (xC ), where H is the entropy function.

I Fenchel duality

I Efficient algorithms

I Techniques to build
approximations (M and H)
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Learning

Learning parameters: knowing the digraph D = (V ,A), learning pv |prt(v):

I pv |prt(v) is generally small dimensional

I does not require much data

I covers OR applications presented

Learning the structure: much harder
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Probabilistic graphical models

Three main kind of problems:

I Inference: Compute E(f (Xv ))

I Learning: learn the statistical model from data

I Decision: stochastic optimization

References:

I Wainwright, M. J., & Jordan, M. I. (2008). Graphical models,
exponential families, and variational inference. Foundations and Trends
in Machine Learning, 1(1–2), 1-305.

I Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models:
Principles and Techniques (Adaptive Computation and Machine
Learning series). MIT Press, Aug, 31, 2009.
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Back to predictive maintenance example

Maintenance slot

Failures

Maintenance slot

Replace Keep

Fly Fly Fly

Flight leg

Unobserved states s1

Partial observations o1 a1

s2

o2 a2

s3

o3 a3

s4

o4
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Predictive maintenance example

s1

o1 a1

s2

o2 a2

s3

o3 a3

s4

o4

Pδ(XV = xV ) =
∏
v∈V s

p(xv |xprt(v))
∏
v∈V a

δv |prt(v)(xv |xprt(v)).

max
δ∈∆

Eδ

( ∑
v∈V `

rv (Xv )

)
.
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Influence diagrams

s1
1

o1
1

a1

s1
2

o1
2

a2

s1
3

o1
3

s2
1

o2
1

s2
2

o2
2

s2
3

o2
3

MILP approach to influence
diagrams:

I Valid inequalities leveraging
independence structure

I Linear program on soluble
influence diagrams

I 16:50, Salle C.103, Victor Cohen, Linear Programming for Decision
Processes with Partial Information

I Cohen, V., & Parmentier, A. (2018). Linear Programming for Decision Processes with Partial
Information. arXiv preprint arXiv:1811.08880.

I P., A., Cohen, V., Leclère, V., Obozinski, G., & Salmon, J. (2019). Mathematical
programming for influence diagrams. arXiv preprint arXiv:1902.07039.
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Conclusion

As an OR practitioner, know which kind of problem ML can solve

I Unsupervised learning

I Supervised learning

I Reinforcement learning

ML can help you take heuristic decisions that speed-up your OR algorithm

Probabilistic graphical models are an interesting tool in the context of data
driven optimization
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Thank you

Post-doc positions at Cermics on the topic
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