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Traveling salesman problem

Is there an optimal solution?

Yes: finite set of solution

Can we enumerate all the solutions?

With 25 cities, we have 24! = 24 x 23 x 22 x --- x 2 x 1 possibilities, that
is, around 6.204 x 10%° possibilities.

Using paper and pencil, testing 1 possibility per second, requires around
1.976 x 10%° years.

Testing 1 million possibilities per second with a computer, requires 19
billion years.



What is Operations Research?

The traveling salesman problem is one of the most famous Operations
Research problem.

Operations Research (OR):
mathematical discipline that deals with the optimal allocation of resources
(typically in firms).

mathematical part of decision science



Examples of Operations Research problems

Find the best tour %@

R R
(1)
Plan the best timetable ?—‘

Find the most resilient network E

Fill a container optimally E=0

d,
e

Locate facilities/warehouses optimally

Schedule jobs on machines @



Operations Research in practice

Operations Research in practice:
1. Model the question studied as an optimization

2. Choose/design an algorithm to solve the optimization problem
3. Interpret the results



Operations Research in practice

Operations Research in practice:
1. Model the question studied as an optimization

2. Choose/design an algorithm to solve the optimization problem
3. Interpret the results

Roughly speaking:
OR researchers focus on 2

OR engineers / users know which algorithms work for 2 and spend their
timeon 1 and 3

Scope of applications of the field: its versatile and powerful algorithms



Operations Research tools 1: exact algorithm

Mixed integer linear programming
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min  cx C/
st. Ax=0b ¢ ¢
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MILP with up to 10° variables solved to optimality in the industry



Operations research tools 2: heuristics

Define a neighborhood to replace gradient
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What is Machine Learning

Machine learning uses data to:
1. extract information from data (unsupervised learning)
“There is A and B"
2. make predictions (supervised learning)
“If A happens, then B with happen”
3. take decisions (reinforcement learning)
“If | want B to happen, then | should do A”



What is Machine Learning

Machine learning uses data to:
1. extract information from data (unsupervised learning)
“There is A and B"
2. make predictions (supervised learning)
“If A happens, then B with happen”
3. take decisions (reinforcement learning)
“If | want B to happen, then | should do A”

Which of OR and ML has the largest scope?



ML vs OR beauty pageant

Google trends data (popularity = proportion of the research)
Machine Learning (blue) vs Operations Research (red)
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Google trends data (popularity = proportion of the research)
Machine Learning (blue) vs Operations Research (red)
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Trendy does not mean relevant: ML is not the king of prediction

nnnnnnnnnnnn

Machine learning (blue) vs horoscope (red)

Remarque Remarque
— i}
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Why trends matters

Many “artificial intelligence” problems are operations research problems.



Why trends matters

Many “artificial intelligence” problems are operations research problems.

Many firms don’t known the existence of OR:
hire ML consultants that don't know OR on OR problems



At peak expectations?

ML takes today our projects / students, can we just wait that ML gets

old-fashioned?

Hype Cycle for Emerging Technologies, 2018
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ML is more than a trend: years at peak expectations

2015
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ML is more than a trend: years at peak expectations
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ML is more than a trend: years at peak expectations

2017

Gartner Hype Cycle for Emerging Technologies, 2017
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ML is more than a trend: years at peak expectations

2018

Hype Cycle for Emerging Technologies, 2018
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Basic machine learning should be in the toolbox of all scientists

Today:
Experience is at the heart of scientific method to validate model

Basic statistics is an important skill for every scientist/engineer



Basic machine learning should be in the toolbox of all scientists

Today:
Experience is at the heart of scientific method to validate model

Basic statistics is an important skill for every scientist/engineer

Machine Learning provides statistics tools for the age of big data.
Data won't disappear
Making predictions will remain at the heart of scientific method
Machine Learning provides “user friendly default methods”

Basic machine learning will be:

an important skill for every scientist/engineer
required in the toolbox of the OR practitioner



Basic optimization in the toolbox of all engineers / decision makers /.

Whether you want to
implement your strategy
learn from the data
approximate your partial differential equation
etc.
in the end, you will want to find a good/the best solution.



Basic optimization in the toolbox of all engineers / decision makers /.

Whether you want to
implement your strategy
learn from the data
approximate your partial differential equation
etc.
in the end, you will want to find a good/the best solution.

and if you problem is of (even moderately) large scale:
need an optimization algorithm
need operations research if your problem is discrete



Machine Learning and Operations Research

Today talk on what happens at the crossroad of OR and ML

1. OR for ML
2. ML for OR
3. Data driven optimization



Machine Learning and Operations Research

Today talk on what happens at the crossroad of OR and ML

1. OR for ML
2. ML for OR

3. Data driven optimization



OR for ML: Optimization and Learning

Machine learning in practice:
Model the problem using a statistical model (e.g. neural network)
Learn the model = solve an optimization problem

Interpret the results



Mathematical programming at the cross-road of OR and ML

“Learning” in ML:

Modeling: formulate an optimization problem (with good statistical
properties)
Optimization: solve it

Bertsimas “Machine Learning under a Modern Optimization Lens” papers

http://www.mit.edu/~dbertsim/papers.html#MachineLearning



Mathematical programming at the cross-road of OR and ML

“Learning” in ML:

Modeling: formulate an optimization problem (with good statistical
properties)

Optimization: solve it

ML “good algorithms": OR "“good algorithms":
good generalization, optimality / solution quality
simple and easy implementation, apply to a wide class of problem
fast convergence to an (MILP)
approximate solution speed

And many shared objectives: scalability to large problems, fast convergence
to an approximate solution



Table of Content

1. Machine Learning problems
2. Machine learning to speed-up your optimization algorithm

3. Probabilistic graphical models for data driven optimization
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Part content

1. Machine Learning problems
1.1 Unsupervised learning
1.2 Supervised learning

1.3 Reinforcement learning



Unsupervised learning

Given samples of data xi,...,x, in R"”, detect some structure in the data

Anomaly detection

Clustering
Dimensionality reduction Generative Adversarial Networks
Learning a distribution. etc.

Extract structure from the data



Clustering

Ecole des Ponts
PurisTech

Given xi, ..., x, in RY, partition them into k clusters of “similar” points.
) ) p p

s Clustero
s Cluster1
e Cluster2

Cluster 3
e Cluster 4
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Clustering &A

uuuuuuuuuuu

Given x1,...,x, in RY, partition them into k clusters of “similar’ points.

Compare different methods on your dataset using sci-kit learn
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Supervised learning problem

Use previously seen data (x1,y1), ..., (Xn, ¥n) to

predict y given a new x

Practically
y = fp(x)
with f5 in a statistical model {@,9 € @}
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with f3 in a statistical model {fb,@ € @}




Supervised learning problem

Use previously seen data (x1,y1), ..., (Xn, yn) to

predict y given a new x

Practically
y = fy(x)
with f3 in a statistical model {f9,9 € @}

Learning the problem: find 6

n
o X i = )



Output types and supervised learning problems

Given (x1,¥1),---,(Xn, ¥n), learn

y = fo(x)
Quantitative variables Qualitative variables
X € Ror in a subset of R X in a non-ordered finite set.

Quantitative or qualitative inputs: pre-processing

Quantitative or qualitative outputs: influence the learning method

Output type | Quantitative | Qualitative
Problem type | Regression | Classification

Binary classification, where y € {0,1}, is especially useful



Inputs and supervised learning problem

y = fy(x)
Kind of x that can be used:
vectors in RY images
qualitative variables videos

time series graphs



Inputs and supervised learning problem

Kind of x that can be used:

vectors in RY
qualitative variables

time series

In practice:

y = fa(x)

images
videos

graphs
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Inputs and supervised learning problem

y = fp(x)
Kind of x that can be used:
vectors in RY images
qualitative variables videos
time series graphs

In practice:

tune you features ¢(x):

y = Oxdu(x)
P

use sparse learning (e.g. lasso) to identify the most relevant features

min D llyi = ()2 + /6]
i=1



Reinforcement learning

A problem that you can model by dynamic programming
Vi(x) = max 3 p(x,x) (€(x, 2,X) + Visa(x) )
a !
X

but not solve because x lives in an exponentially large state space



Reinforcement learning

A problem that you can model by dynamic programming
Vi(x) = max 3 p(x,x) (€(x, 2,X) + Visa(x) )
a !
X

but not solve because x lives in an exponentially large state space

Reinforcement learning is an approximate dynamic programming method
that

uses an value function of the form fy(x) ~ V;(x)

learn 6 through simulation



Part content

2. Machine learning to speed-up your optimization algorithm
2.1 ML to guide heuristics
2.2 Supervised learning for MILP

Axel Parmentier Operations research and machine learning May 10th, 2019
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Main message

Machine Learning can predict many interesting informations that you can
exploit in your solution schemes.



Main message

Machine Learning can predict many interesting informations that you can
exploit in your solution schemes.

Today, examples on:
Heuristics
MILPs



Learn the structure of the instance for cheap initialization

Many OR problems are partitioning problems
sometimes, a rather good heuristic can be found using clustering

initialize a heuristic

Cout total 26355




Learn the structure of the instance for cheap initialization

Many OR problems are partitioning problems
sometimes, a rather good heuristic can be found using clustering
initialize a heuristic



Learn the structure of the instance for cheap initialization

nnnnnnnnnnnnn

Many OR problems are partitioning problems
sometimes, a rather good heuristic can be found using clustering
initialize a heuristic
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Learning parameters: well known in the heuristics toolbox

Learning where to initialize a local search

Zhou, Y., Hao, J. K., & Duval, B. (2016). Reinforcement learning based local search for

grouping problems: A case study on graph coloring. Expert Systems with Applications, 64,
412-422.

Initialize a solution with a given prior probability
Run a local search form this initial solution
Update the prior probability
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Zhou, Y., Hao, J. K., & Duval, B. (2016). Reinforcement learning based local search for

grouping problems: A case study on graph coloring. Expert Systems with Applications, 64,
412-422.

Initialize a solution with a given prior probability
Run a local search form this initial solution
Update the prior probability

Learning which neighborhood to use in a large neighborhood search



Learning parameters: well known in the heuristics toolbox

Learning where to initialize a local search

Zhou, Y., Hao, J. K., & Duval, B. (2016). Reinforcement learning based local search for

grouping problems: A case study on graph coloring. Expert Systems with Applications, 64,
412-422.

Initialize a solution with a given prior probability
Run a local search form this initial solution
Update the prior probability

Learning which neighborhood to use in a large neighborhood search

Many of these ideas already in

Gardi, F., Benoist, T., Darlay, J., Estellon, B., & Megel, R. (2014). Mathematical
Programming Solver Based on Local Search. John Wiley & Sons.



Learn where to search in local search

Learning property of good solutions enables to know where to search.



Learn where to search in local search

Ecole des Ponts
ech

Learning property of good solutions enables to know where to search.
Heuristics for the VRP:

Arnold, F., & Sérensen, K. (2018). What makes a VRP solution good? The generation of
problem-specific knowledge for heuristics. Computers & Operations Research.

Arnold, F., & Sérensen, K. (2019). Knowledge-guided local search for the vehicle routing
problem. Computers & Operations Research, 105, 32-46.



Learn where to search in local search
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Learning property of good solutions enables to know where to search.
Heuristics for the VRP:

Arnold, F., & Sérensen, K. (2018). What makes a VRP solution good? The generation of
problem-specific knowledge for heuristics. Computers & Operations Research.

Arnold, F., & Sérensen, K. (2019). Knowledge-guided local search for the vehicle routing
problem. Computers & Operations Research, 105, 32-46.

Methodology:
Generate a large set of instances and feasible solutions

Train a supervised learning classifier to predict if a feasible solution is
near optimal or not

Use this knowledge to guide local-search



Supervised learning prediction on MILPs

min cx
s.t. Ax < b

xc 79 x R4

Can we predict accurately:
Optimal solution of MILPs?
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Value of MILPs? no
Solution time? no

or at least not yet



Supervised learning prediction on MILPs

min cx
s.t. Ax < b

xc 79 x R4

Can we predict accurately:

Optimal solution of MILPs? no Use supervised learning to
Value of MILPs? no predict in fractions of a second
Solution time? no interesting statistics on MILPs

or at least not yet

Survey:

Bengio, Y., Lodi, A., & Prouvost, A. (2018). Machine Learning for Combinatorial
Optimization: a Methodological Tour d'Horizon. arXiv preprint arXiv:1811.06128.



What can we predict on general MILPs ?

Ecole des Ponts
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Before launching the solver: interesting parameters

Which Dantzig-Wolfe decomposition should be used?

Kruber, M., Liibbecke, M. E., & Parmentier, A. (2017, June). Learning when to use a
decomposition. In International Conference on Al and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (pp. 202-210). Springer, Cham.

After a fraction of the solver time:

If the solver will prove optimality within the time limit:
Fischetti, M., Lodi, A., & Zarpellon, G. (2018). Learning MILP Resolution Outcomes Before

Reaching Time-Limit.
Heuristic decisions all along the solution scheme:

Learning where and how to branch:
Lodi, A., & Zarpellon, G. (2017). On learning and branching: a survey. TOP, 25(2), 207-236.



Example: learning to decompose

A MILP P DWR for Mixed Integer
min  cx Programs
st. Ax=b Solved by column
x € R x Z% generation

oo

Figure: Decomposition D of P Figure: Tighter relaxation



Automatic Decomposition in GCG

yes
MIP P H Detection } DEC D, @
o

A MIP can be forced in several types of decomposition:

SCIP

Border Staircase etc.

GCG performance highly depends on how well the decomposition catches
the problem structure.

Our work: a supervised learning approach to select the best decomposition
(using no decomposition is often the best answer).



Supervised learning binary classification problem

Binary classification problem

If it remains solution time t, is it better to solve using GCG with D or to
use SCIP (no decomposition)?



Supervised learning binary classification problem

Binary classification problem

If it remains solution time t, is it better to solve using GCG with D or to
use SCIP (no decomposition)?

Input Feature _| Features vector | Classifier Output
(Pa Da t) map QZS - ¢(P7 D7 t) € Rd fg i f@ (¢ (Pa D7 t))

Define ¢ Choose f family
more than 80 features Learn 6



Define features ¢

Examples of features used:

>
>
| 4
>
>

Time t

Nb variables/constraints
Variable types
Constraint types

Products of features

v

vvyYyy

Nb linking variables /
constraints

Nb blocks
min, max, mean block size
Detector used (indicator)

Detection quality metrics

GCG decomposition selection tool uses empirical detection quality metrics.



Learn the problem: generate database

Database Schema

database

python interface

SCIP version 3.2.1, GCG 2.1.1. E—’

i7-2600 3.4GHz PC, J
8MB cache, 16GB RAM /

~ 135 days computing time | peeon |

/

Crucial part, because a supervised Decompositions ~

learning scheme will work on certain ’ ’
kinds of inputs only if such inputs are ‘ ‘

in the training set r




Distribution of Instances

SCIP structured non-str
results all | clr stcv cpmpsdlb ctst gapntlb Itsz bp rapstbl cvrp| miplib

instances 400125 25 25 25 25 25 25 252525 25 25 100

opt. sol. {65.5%(19 3 18 10 25 23 25 25 612 22 6 68

feas. sol. [31.5%| 6 21 v 1 - 2 - -1912 3 19 26

no sol. 3.0%| - 1 - 4 - - - - -1 - - 6

Structured Instances

coloring (clr) network design (ntlb)

set covering (stcv) resource allocation (rap)
capacitated p-median (cpmp) capacitated vehicle routing (cvrp)
survivable fixed telecom lot sizing (ltsz)

network design (sdlb) bin packing (bp)

cutting stock (ctst) stable set (stbl)

generalized assignment (gap)



Splitting Training and Testset

Reminder: datapoints (P, D, t)

Split training and test set by mip instances, to avoid a biased estimator.

Distribution of decompositions per MIP instance:

Average: ~ 15.3

Standard Deviation: ~ 9.0

Instances Decompositions
Training | 269 (~ 2/3) 4434
Test 131 (~ 1/3) 2069




Overall Performance

Test set of 131 MIP instances, 99 structured and 32 unstructured.
GCG better than SCIP on 34 instances.

Nearest neighbor classifier of scikit-learn library.

Instances All Structured Non-structured

Solver SCIP GCG SL OPT|SCIP GCG SL OPT|SCIP GCG SL OPT
No opt. sol. 52 66 44 39| 39 37 31 26/ 13 29 14 13
CPU time (h)|111.3142.6 93.1 85.7/83.5 82.2 65.9 58.5| 27.8 56.8 29.2 27.2
Geo. mean (s)|127.1370.4 78.6 67.8/73.4146.9 39.2 32.2/672.9 5145.0 766.0 646.5

SCIP: apply SCIP to all instances
GCG: apply GCG with build-in selection tool
SL: our supervised learning scheme

OPT: best decomposition selected each time



Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For (P, D, t): Is GCG on (P, D) better than SCIP on P?

All Structured Non-
instances structured
SCIP GCG | SCIP GCG | SCIP GCG
Classifier Pred. | 74.0% 26.0% | 68.7% 31.3% | 90.6%  9.4%
RBF SCIP TN FN
Unbal. GCG FP TP
KNN SCIP
distance. GCG
RF SCIP
Unbal. GCG
RF SCIP
Bal. GCG




Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For (P, D, t): Is GCG on (P, D) better than SCIP on P?

All Structured Non-

instances structured
SCIP GCG | SCIP GCG | SCIP GCG
Classifier Pred. | 74.0% 26.0% | 68.7% 31.3% | 90.6%  9.4%
RBF SCIP | 73.3% 19.1% | 66.7% 23.2% | 90.6%  9.4%
Unbal. GCG 3.8% 3.8% 5.1% 5.1% 0.0% 0.0%
KNN SCIP | 69.5% 9.9% | 64.6% 11.1% | 84.4%  6.3%
distance. GCG 6.9% 13.7% 71% 17.2% 6.3% 3.1%
RF SCIP | 63.4% 11.5% | 55.6% 13.1% | 87.5% 6.3%
Unbal. GCG | 10.7% 145% | 13.1% 18.2% 31% 3.1%
RF SCIP | 60.3% 10.7% | 50.5% 11.1% | 90.6%  9.4%
Bal. GCG | 13.7% 15.3% | 18.2% 20.2% 0.0% 0.0%




Solver Selection Accuracy

Avoid using GCG when there is no appropriate structure.

For (P,D, t): Is GCG on (P, D) better than SCIP on P?

On many supervised learning problems,
a simple approach gives a quite good performance
a much more involved approach does only slightly better

Keep it simple!



We can predict more on specific problems

Suppose we have a tractable MILP formulation for some given problem.

Make fast predictions on new instances using supervised learning



We can predict more on specific problems
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Suppose we have a tractable MILP formulation for some given problem.
Make fast predictions on new instances using supervised learning

Prediction of the value:

Fischetti, M., & Fraccaro, M. (2018). Machine learning meets mathematical optimization to
predict the optimal production of offshore wind parks. Computers & Operations Research.



We can predict more on specific problems

Ecole des Ponts
ech

Suppose we have a tractable MILP formulation for some given problem.
Make fast predictions on new instances using supervised learning

Prediction of the value:

Fischetti, M., & Fraccaro, M. (2018). Machine learning meets mathematical optimization to
predict the optimal production of offshore wind parks. Computers & Operations Research.

Predictions of (parts of) a good solution:

Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2018).
Predicting solution summaries to integer linear programs under imperfect information with
machine learning. arXiv preprint arXiv:1807.11876.

Larsen, E., Lachapelle, S., Bengio, Y., Frejinger, E., Lacoste-Julien, S., & Lodi, A. (2019).
Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information.
arXiv preprint arXiv:1901.07935.



Research perspectives

In many industrial context, solve every day variants of the same problem
We have an exact MILP solver
Too slow for operational use

Can we combine OR and ML to have a better solver?

Bayesian optimization for advanced parameter selection?

Can use reinforcement learning to learn along a branching scheme ?



Part content

3. Probabilistic graphical models for data driven optimization
3.1 A motivating example from airline operations

3.2 Probabilistic graphical models

3.3 Influence diagrams



Data driven optimization

Machine learning uses data to:
take decisions (reinforcement learning)
“If I want B to happen, then | should do A"



Data driven optimization

Machine learning uses data to:
take decisions (reinforcement learning)
“If I want B to happen, then | should do A"

Operations Research is decision science (originally without data)

Data changes our problem

Taking decisions based on data requires to tackle with
data (ML)

curse of dimensionality (OR)



A predictive maintenance problem

Fly

Maintenance slot

Replace

/ N\

Keep
Failures

Fly

. Fly
Maintenance slot

e Flight leg

Data available: airplane signals recorded at 1 Hz. Previous failures.

Objective : Find an optimal maintenance planning minimizing the
expected costs



Probabilistic graphical models — definition and inference problem

Example:
A distribution (X, ),cy factorizes as a directed battery b
graphical model on a digraph D = (V, A) if fuel f
lights ¢

IPJ()<V = XV) = H pv|prt(v)(XV7Xprt(v))

VeV engine start s

where D is acyclic and

IP)()<v = XVIXprt(v) = Xprt(v)) = pv\prt(v)(XV|Xprt(v)) @ @



Probabilistic graphical models — definition and inference problem

Example:
A distribution (X, ),cy factorizes as a directed battery b
graphical model on a digraph D = (V, A) if fuel f
lights ¢

IPJ()<V = XV) = H pv|prt(v)(XV7Xprt(v)) .
ity engine start s

where D is acyclic and %@
IP)()<v = XVIXprt(v) = Xprt(v)) = pv\prt(v)(XV|Xprt(v)) @ @

Inference problem: compute E(f(X,)) or P(X, = x,|Xe = xg).

Example: probability that the fuel tank is empty given that lights work and
engine does not start?



Richer example of Inference problem
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Richer example of Inference problem

New York Paris
~_ z( >—'2>:<O
O
plane /1 wr ] O

g pV ItV
—‘crew ’ W, u(: Vl}/ [prt(v)

We cannot hope to work directly with py(xy) = P(Xy = xv)
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As V is large, work with collection of moments p¢ with |C| small
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Inference as optimization

As V is large, work with collection of moments p¢ with |C| small

M= {(MC)CEV 3y, VC,Vxe, pelxc) = Y v XC7XV\C)}

Xy\C

Theorem (e.g. Theorem 3.4 in Wainwright and Jordan (2008))

Denoting ¢ = (log(py|prt(v))), an optimization solution ;* of the convex
optimization problem

max (6s) + H(n)
peEM

is such that P(X¢ = xc) = pc(xc), where H is the entropy function.



Inference as optimization

As V is large, work with collection of moments p¢ with |C| small

M= {(MC)CEV 3y, VC,Vxe, pelxc) = Y v XC7XV\C)}

Xy\C

Theorem (e.g. Theorem 3.4 in Wainwright and Jordan (2008))

Denoting ¢ = (log(py|prt(v))), an optimization solution ;* of the convex
optimization problem

max (6s) + H(n)
peEM

is such that P(X¢ = xc) = pc(xc), where H is the entropy function.

Fenchel duality Techniques to build
Efficient algorithms approximations (M and H)



Learning

Learning parameters: knowing the digraph D = (V/, A), learning Pvprt(v):
Puvipri(v) is generally small dimensional
does not require much data

covers OR applications presented

Learning the structure: much harder



Probabilistic graphical models

Three main kind of problems:
Inference: Compute E(f(X,))
Learning: learn the statistical model from data

Decision: stochastic optimization

References:

Wainwright, M. J., & Jordan, M. I. (2008). Graphical models,
exponential families, and variational inference. Foundations and Trends
in Machine Learning, 1(1-2), 1-305.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models:

Principles and Techniques (Adaptive Computation and Machine
Learning series). MIT Press, Aug, 31, 20009.
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Back to predictive maintenance example

Fly _ Fly _ Fly
Maintenance slot [&—e—e{ Maintenance slot

/ N\

Replace Keep

: e Flight leg
Failures

Unobserved states (P Sy
Partial observations ‘_../(@_,./‘_,E/
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Predictive maintenance example

e TR

IP36()<V :XV) - H p(XV‘Xprt(v)) H 6v\prt(v)(XV‘Xprt(v))'

vevs veva

max E5< Z rV(XV)>.



Influence diagrams

MILP approach to influence
diagrams:
Valid inequalities leveraging
independence structure

Linear program on soluble
influence diagrams



Influence diagrams

o=

H
N

MILP approach to influence
diagrams:
Valid inequalities leveraging
independence structure

Linear program on soluble
influence diagrams

16:50, Salle C.103, Victor Cohen, Linear Programming for Decision

Processes with Partial Information

Ecole des Ponts
ech

Cohen, V., & Parmentier, A. (2018). Linear Programming for Decision Processes with Partial

Information. arXiv preprint arXiv:1811.08880.

P., A., Cohen, V., Leclére, V., Obozinski, G., & Salmon, J. (2019). Mathematical
programming for influence diagrams. arXiv preprint arXiv:1902.07039.



Conclusion

As an OR practitioner, know which kind of problem ML can solve
Unsupervised learning
Supervised learning

Reinforcement learning

ML can help you take heuristic decisions that speed-up your OR algorithm

Probabilistic graphical models are an interesting tool in the context of data
driven optimization



Thank you

Post-doc positions at Cermics on the topic
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