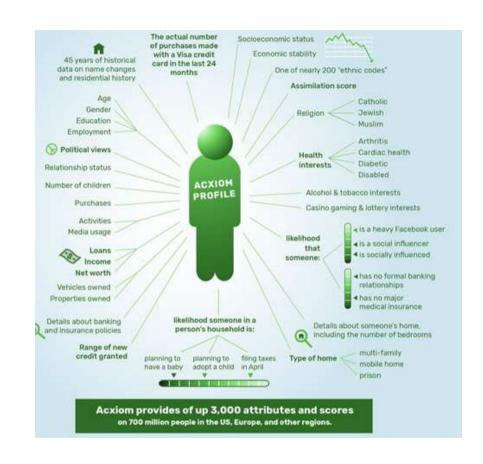


Séminaire SystemX 18 octobre 2018

Protection de la vie privée : potentiel et paradoxe du Cloud Personnel

Philippe Pucheral UVSQ / DAVID & INRIA Saclay, équipe PETRUS

2 mots sur les enjeux de la protection des données personnelles

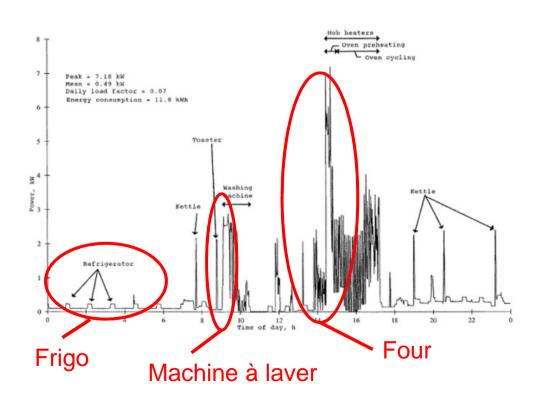

Entre enjeux économiques ...

Risque généralisé d'intermédiation

... et sociétaux

- Discrimination dans l'offre de services (ex: Allianz conduite connectée, YouDrive...)
- Uniformisation des comportements induits par le profilage (Google vs Qwant)
- Surveillance entre particuliers (ex : Intelius)
- Fuites massives : Yahoo, Equifax ...

Exacerbé par la collecte silencieuse de données via les objets connectés


Données personnelles et IoT

80 Milliards d'objets connectés en 2020 (IDATE)


Une manne pour l'analyste mais un risque patent pour la vie privée ...

Doit-on réellement tout centraliser ?

Courbe de charge de smart meter

Trace de geolocalisation

Réglement Général Européen sur la Protection des Données (RGPD)

Quelques principes clé du RGPD

- Transparence et Consentement explicite et éclairé quant à la finalité de la collecte et du traitement des données
- Responsabilité (Accountability)
 - o Privacy-by-Design, Sécurité, Data Protection Officer, Registre, Notification des incidents ...
- Droit des personnes
 - Droit à l'oubli, Droit d'accès, <u>Droit à la portabilité (art. 20)</u>...

Loi Lemaire pour une République Numérique

Portabilité et récupération des données (art. 48), droit à l'auto-hébergement (art. 41)

Consacre le droit des individus à récupérer une copie de leurs données personnelles et à les gérer par eux-même

Exemples d'initiatives

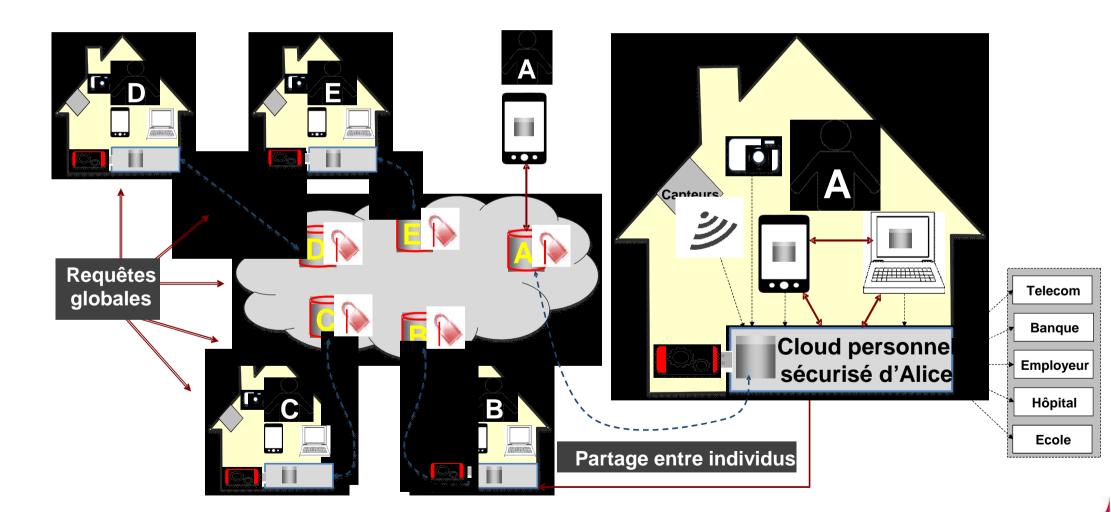
Récupération de données médicales et énergétiques - USA

Données généralistes (énergie, crédit, smartphone ...) - UK

« initiative gouvernementale regroupant industriels et associations de consommateurs »

Self-Data en France

« La production, l'exploitation et le partage de données personnelles par les individus, sous leur contrôle et à leurs propres fins »



Cloud Personnel/PDMS (Personal Data Mgt Syst)

• Capter, stocker et gérer les données à la source, sous le contrôle de l'individu, pour mieux maîtriser leur cycle de vie et unifier les silos d'information

Que peut-on faire avec ?

Organiser l'ensemble de son patrimoine numérique et bénéficier d'outils puissants de recherche, de visualisation et de partage

Par mots-clés, par facettes, visualisation de masses de données historisées

Personal Big Data

- Croiser des données auparavant en silos
 - Santé : quantified-self × alimentation × examens biologiques × ···
 - $_{\circ}$ Optimisation du budget : tickets de caisse imes factures imes relevés bancaires imes \cdots
 - $_{\circ}$ Optimisation du temps : usage apps smartphone imes trajetsimestélé imes ...

Big Personal Data

 Croiser des données de multiples individus (ex: études épidémiologiques, sociologiques, économiques, deep learning) en préservant la vie privée de chacun

Et beaucoup à inventer ...

Faut-il y croire?

Hippocratic DB [VLDB'02], Personal Data Server [VLDB'10], OpenPDS [PLOS'14] ...

Des succès d'estime (académiques)

En 2015, Serge Abiteboul y croit ©

• Managing your digital life with a Personal information management system, Com. of the ACM

En 2018, Tim Berners Lee aussi © ©

".... the web has evolved into an engine of inequity and division ... Solid is how we evolve the web in order to restore balance - by giving every one of us complete control over data, in a revolutionary way ..." https://www.inrupt.com/blog/one-small-step-for-the-web

Ainsi que de nombreuses startups, y compris en France : CozyCloud, Helixee, Lima ...

Quelques challenges autour du cycle de vie des données personnelles

- Collecte automatique des données (scrappers, loT ...)
- Intégration/nettoyage des données
- Indexation sémantique des données
- Analyse de données Privacy-by-Design
- Destruction des données / droit à l'oubli

Et la sécurité!

Quelques challenges liés à la sécurité / privacy

Modèles de contrôle d'accès et d'usage

Adapté à l'utilisateur lambda (empowerment, audit, ease of use)

Chiffrement des données

Adapté à l'IoT, adapté à l'archivage

Anonymisation

 Compromis protection/utilité, décentralisation, personnalisation, differencial privacy

Calculs distribués

Privacy-Preserving Big Personal Data

Principes architecturaux

Paradoxe du Cloud Personnel faisant suite au Privacy Paradox

Diversité des architectures de Cloud Personnel/PDMS

PDMS \Rightarrow tout notre patrimoine numérique au même endroit

Hébergement en ligne traditionnel

- BitsAbout.me, Meeco, CozyCloud ...
- Trust model : confiance dans l'hébergeur, le PDMS provider, les Apps

Hébergement Zero-Knowledge

- SpyderOak, MyDex, Sync ...
- Trust model: confiance dans l'environnement client et les Apps

Auto-hébergement

- SW (OpenPDS, DataBox ...), HW(Helixee, Lima, CloudLocker ...), Secure HW (PDS, Trusted Cells ...)
- Trust model: confiance dans le PDMS provider et dans le SW ou HW ou secure HW

Paradoxe du Cloud Personnel

Souveraineté accrue surface d'exposition accrue

Définir de nouvelles propriétés de sécurité capturant le cycle de vie des données dans un PDMS

Cycle de vie des données

Collecte/stockage-restauration/exploitation/partage/destruction

Des différences avec un environnement Cloud traditionnel

- Utilisateur 'naif' vs. administrateurs experts (DBA, DSA)
- Chiffrement des données + archive avec clé issue de password vs. HSM
- Riche écosystème d'Apps untrusted vs. Applications trusted et établies
- Confiance du Querier dans les données consultées ?
- Politique de partage adhoc vs. modèles RBAC/MAC administrés de façon centralisée

Définir de nouvelles propriétés de sécurité capturant le cycle de vie des données dans un PDMS [IS'18]

Propriétés requises pour un Extensible&Secure PDMS (ES-PDMS)

Piped Data Collection

- Eviter la fuite des credentials
- Confiner le code de collecte à l'insertion de données dans le PDMS

Mutual Data at Rest Protection

- Prévenir les attaques de confidentialité et d'intégrité sur les données stockées et l'archive, y compris de la part du propriétaire de PDMS (owner)
- Le secret protégeant l'archive doit être reconstructible
- Ce secret ne peut être reconstruit que par un ES-PDMS, pas même par l'owner

Définir de nouvelles propriétés de sécurité capturant le cycle de vie des données dans un PDMS (con't)

Bilaterally Trusted Personal Computation

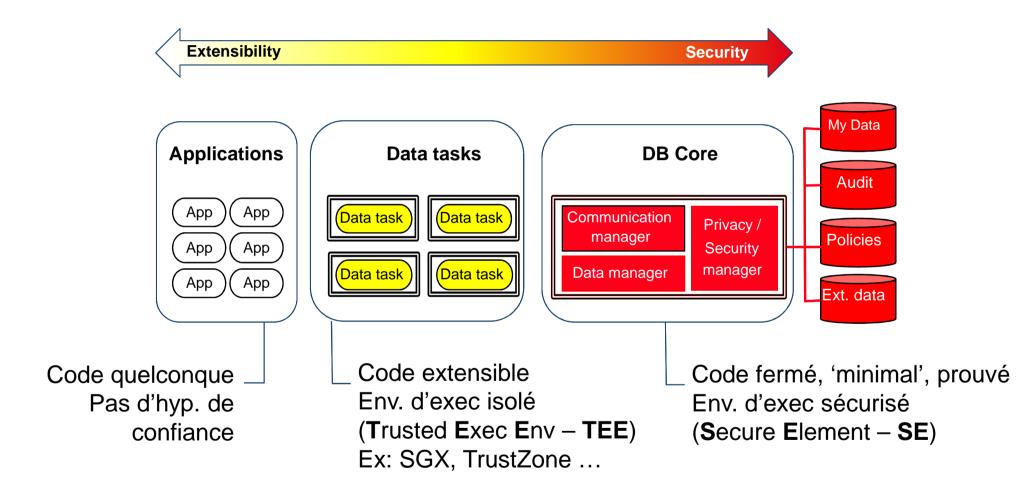
- Uniquement les données requises pour le calcul sont accédées
- Seul le résultat final est exposé au querier
- •L'exécution produit une trace d'audit accessible à *l'owner*
- •Le querier doit recevoir une preuve que le calcul a été effectué avec le bon code, sur les bonnes données

Mutually Trusted Collective Computation

Transposition des conditions précédentes à un calcul distribué sur n participants

Controlled data dissemination

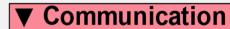
- •L'intégrité et la confidentialité des interactions entre l'owner et son PDMS sont garanties (notamment concernant la définition de la politique de partage)
- Les règles de dissémination énoncées sont incontournablement appliquées par le PDMS



Problématique architecturale [18'18]

Difficulté : Satisfaction des propriétés de sécurité en environnement ouvert

Problématique architecturale (con't)


Untrusted modules

Apps

TCP/IP DNS

- Core (proven code)
- solated data task
- ☐ Untrusted module/app
- Protected databases
- Code isolation
- **1** Attestation
 - Confidentiality
 - Peripheral isolation

Core modules (proven)

- TLS-trusted
- Authentication

▼ Policy enforcement

- Reference monitor
- Attestation
- Audit

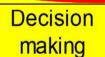
Data storage

- Data storage & access
- Backup & recovery

Credentials, policies, manifests, tasks, etc.

User's & external user's data, derived data

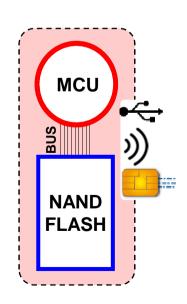
Isolated Data-Tasks


Data Collector



Personal computation

Collective computation

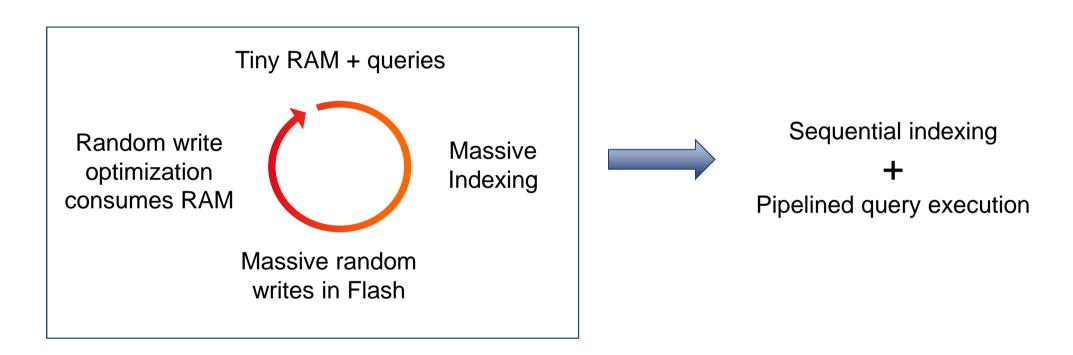

Rapide focus sur : Data Storage & Access

Evaluation de requêtes dans le Secure Core (Secure Element)

- Contrôle d'accès assertionnel = autoriser des traitements sur des Raw Data sensibles sans les dévoiler (équiv. Vues relationnelles)
- o Exemple = calcul d'agrégat, sous-ensemble de valeurs répondant à une qualification
- o Un enjeu de privacy et de soutenabilité

Difficulté : Gestion de données en environnement fortement contraint

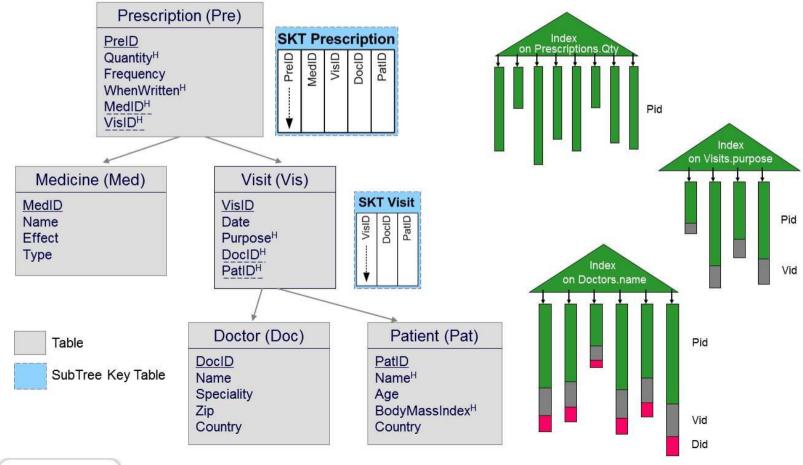
- Microcontrôleur
 - RAM très faible (5KB ~ 128KB) et ratio RAM/Stable storage décroissant
 - Encore plus faible dans les SE
- Mémoire stable NAND Flash (GB-sized)
 - erase-before-rewrite, limited erase cycles,
 FTL unpredictability, cost of random (re)writes



Data Storage & Access (con't)

Une combinaison de contraintes HW conflictuelles (relative à la gestion de données)

Nécessite de revoir en profondeur les stratégies d'indexation et d'évaluation de requêtes BD


Application à des requêtes SQL-like [DAPD'14]

Index purement séquentiels

Hyp: schéma de BD arborescent

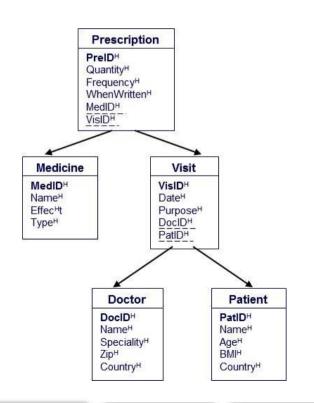
SKT : Subtree Key Table (index de jointure généralisé)

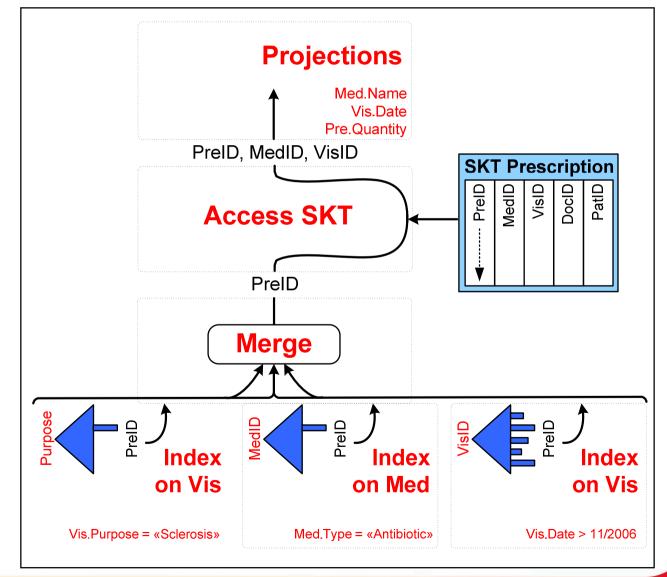
Climbing Index : multi-tables, basé sur des Bloom filters

Execution de requête 100% pipeline

SELECT Med.Name, Pre.Quantity, Vis.Date

FROM Medicine Med, Prescription Pre, Visit Vis


WHERE Vis.Date > 11/2006


AND Vis.Purpose = "Sclerosis"

AND Med.Type = "Antibiotic"

AND Med.MedID = Pre.MedID

AND Vis.VisID = Pre.VisID;

Généralisation: règles de design [18'17, VLDB'15]

(1) Write-once partitioning

 Découper l'index en n partitions successives de taille bornée (RAM) et jamais modifiées après leur écriture en Flash

(2) Linear pipelining

 Définir un algorithme d'évaluation pipeline (en RAM bornée et à 'coût linéaire') sur l'ensemble des partitions

(3) Background linear merging

 Proposer un algorithme de fusion des partitions (pipeline) pour limiter leur nombre (log.) et passer à l'échelle

Requêtes top-k [IS'17, EDBT'16, VLDB'15]

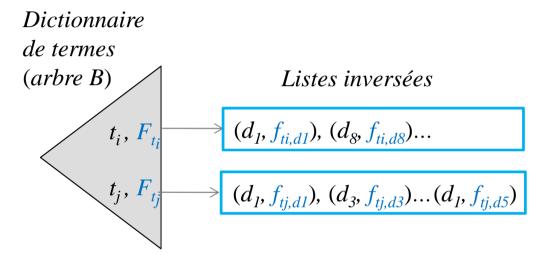
Méthodes BD classiques

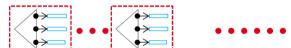
Index inversé (modifié 'en place')

Dictionnaire de termes $(arbre\ B) \qquad Listes\ inversées$ $t_i,\ F_{t_i} \qquad (d_1,f_{t_i,d1}),\ (d_8,f_{t_i,d8})...$ $(d_1,f_{t_j,d1}),\ (d_3,f_{t_j,d3})...(d_1,f_{t_j,d5})$

- Evaluation d'une fonction score
- (matérialisation en RAM)

TF-IDF(d) =
$$\sum_{\{t_i\} \in Q} \left(f_{t_i,d}^* \operatorname{Log}(N/F_{t_i}) \right)$$

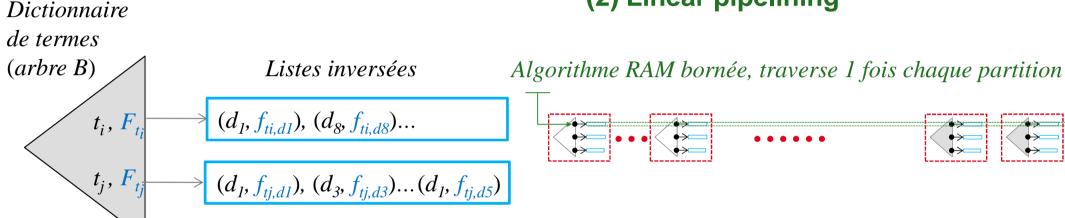




- Méthodes BD classiques
 - Index inversé (modifié 'en place')

Design du composant
 (1) Write-once partitioning

- Evaluation d'une fonction score
- (matérialisation en RAM)

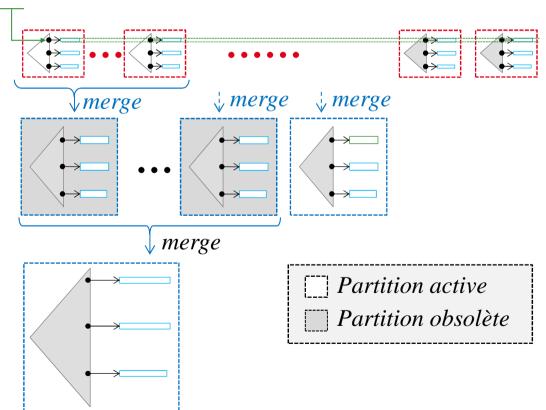

TF-IDF(d) =
$$\sum_{\{t_i\} \in Q} \left(f_{t_i,d}^* \text{ Log}(N/F_{t_i}) \right)$$

- Méthodes BD classiques
 - Index inversé (modifié 'en place')
- Design du composant
 - (1) Write-once partitioning
 - (2) Linear pipelining

- Evaluation d'une fonction score
- (matérialisation en RAM)

TF-IDF(d) =
$$\sum_{\{t_i\} \in Q} \left(f_{t_i,d}^* \log(N/F_{t_i}) \right)$$

- Méthodes BD classiques
 - Index inversé (modifié 'en place')


Dictionnaire de termes $(arbre\ B) \qquad Listes\ inversées \qquad A$ $t_i,\ F_{t_i} \qquad (d_1,f_{t_i,d1}),\ (d_8,f_{t_i,d8})... \qquad (d_1,f_{t_j,d1}),\ (d_3,f_{t_j,d3})...(d_1,f_{t_j,d5})$

- Evaluation d'une fonction score
- (matérialisation en RAM)

TF-IDF(d) =
$$\sum_{\{t_i\} \in Q} \left(f_{t_i,d}^* \text{ Log}(N/F_{t_i}) \right)$$

- Design du composant
 - (1) Write-once partitioning
 - (2) Linear pipelining
 - (3) Background linear merging

Algorithme RAM bornée, traverse 1 fois chaque partition

- Méthodes BD classiques
 - Index inversé (modifié 'en place')

Dictionnaire de termes (arbre B)Listes inversées Algorithme RAM bornée, traverse 1 fois chaque partition $(d_1, f_{ti.d1}), (d_8, f_{ti.d8})...$ $(d_1, f_{tj,d1}), (d_3, f_{tj,d3})...(d_1, f_{tj,d5})$

- Evaluation d'une fonction score
- (matérialisation en RAM)

TF-IDF(d) =
$$\sum_{\{t_i\} \in Q} \left(f_{t_i,d}^* \text{ Log}(N/F_{t_i}) \right)$$

- Design du composant
 - (1) Write-once partitioning
 - (2) Linear pipelining
 - (3) Background linear merging

\merge ↓ merge 1, merge *↓ merge* Partition active Partition obsolète

- Méthodes BD classiques
 - Index inversé (modifié 'en place')

Dictionnaire de termes $(arbre\ B) \qquad Listes\ inversées \qquad A$ $t_i,\ F_{t_i} \qquad (d_l,f_{t_i,dl}),\ (d_8,f_{t_i,d8})... \qquad (d_l,f_{t_j,d1}),\ (d_3,f_{t_j,d3})...(d_l,f_{t_j,d5})$

- Evaluation d'une fonction score
- (matérialisation en RAM)

TF-IDF(d) =
$$\sum_{\{t_i\} \in Q} \left(f_{t_i,d}^* \text{ Log}(N/F_{t_i}) \right)$$

- Design du composant
 - (1) Write-once partitioning
 - (2) Linear pipelining
 - (3) Background linear merging

Algorithme RAM bornée, traverse 1 fois chaque partition *\merge ↓ merge* 1, merge *↓ merge* Partition active Partition obsolète

→ Composant capable d'indexer des millions d'entrées

Rapide focus sur : Collective Computations

Objectif

- o Calculs distribués quelconques sur données réelles, large échelle et assurant que
 - (1) consentement, limited collection et limited retention sont respectés,
 - (2) seul le résultat du calcul est dévoilé à une tierce partie,
 - (3) le querier a la garantie d'un résultat calculé honnêtement
- Protocoles SMC et Gossip répondent au point (2) mais ne satisfont pas la combinaison large échelle / généricité
- o Differential privacy, homomorphic encryption ne répondent pas à ce problème
- o Trusted central server (e.g., TrustedDB ...) contredit l'hypothèse de décentralisation

Hypothèses

- o Chaque participant satisfait a priori les propriétés de sécurité du PDMS
- Majorité de participants Honest-but-Curious et quelques participants Malicious (sidechannel attacks sur TEE)

Calcul décentralisé de requêtes Agrégat avec GroupBy [EDBT'14, TODS'17], extension au MapReduce [CoopIS'15]

Trust model: asymmetric architecture

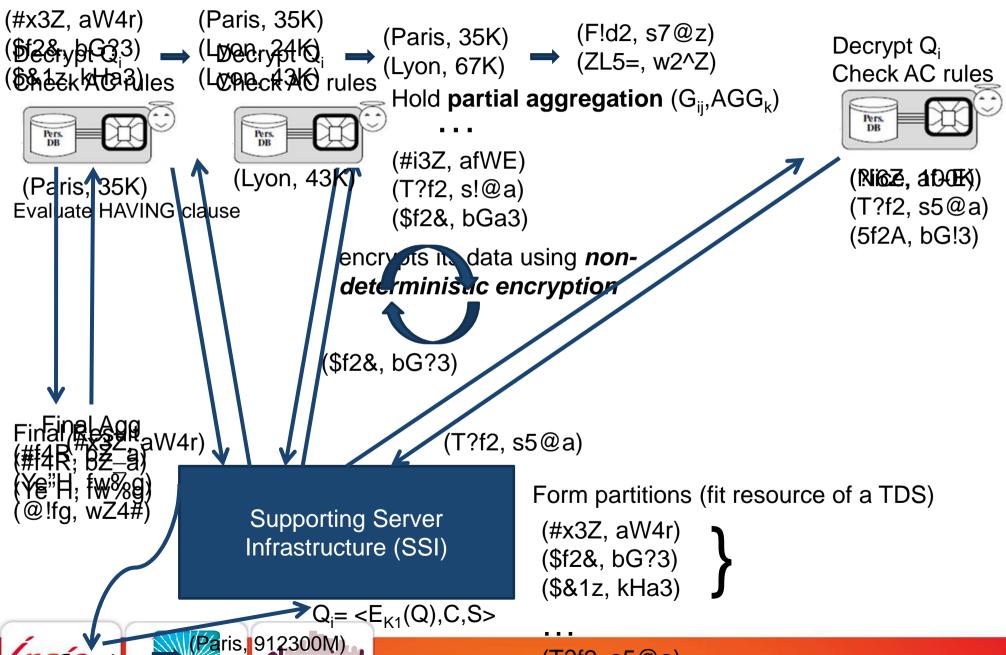
- Tous les participants sont Honest (SE) (même si leur owner est malicious)
- Une Supporting Server Infrastructure (SSI) Honest-but-Curious

Principe

- Chaque participant contribue avec ses données chiffrées pendant la phase de collecte
- Le SSI forme des partitions de ces données qui sont ensuite déchiffrées par les participants pendant la phase de calcul (n rounds)
- Contre-mesures pour minimiser le nombre de rounds sans que le flot de données chiffrées ne puisse subir d'attaque statistique (noise-based, histogram-based)

Limite

o Partage d'un secret protégé par le SE (tamper-resistant) de chaque participant



Secure Aggregation

(Lyon, 56000M)

Q: SELECT SUM(Salary) GROUP BY City HAVING SUM(Salary) > 50M

Towards a more general solution

Trust model

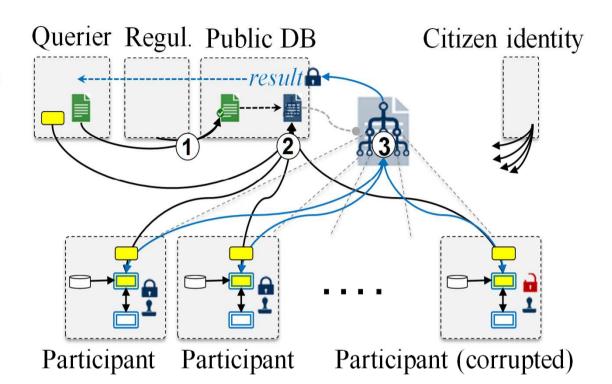
- Untrusted user devices and infrastructure
- Large set of trusted TEEs, small set of corrupted TEEs (side channel attacks)
- Trusted computation code (no restriction on the code itself)

Security goals

- Code safety: compliance with consent / limited data collection & data retention
- Mutually Trusted Collective Computation : querier and participants get the guarantee that the genuine code has been computed on genuine data
- Resilience to attacks and failures

Principle

Based on manifests run inside SGX enclaves



Global picture

Legend:

- Actors (citizen/legal person)
- Manifest (spec.)
- Manifest (exec.)
- TEE protocol driver
- □ TEE computation code
- Untrusted protocol driver
- PDMS (personal data)
- **▲** Attestation
- **♠** Confidentiality
- **■** Corrupted TEE

- ① Querier specifies a manifest and publish it; Regul. certifies the manifest
- 2 Participants consent to manifest; Participants/querier build executable manifest
- 3 Participants execute manifest (query plan); Querier retrieves results (encrypted)

Counter-measures must guarantee

- Locally checkable validity of executions (by each participant)
- Provably random executions

Equipe PETRUS: PErsonal and TRUSted Cloud UVSQ / DAVID & Inria Saclay

Un objectif

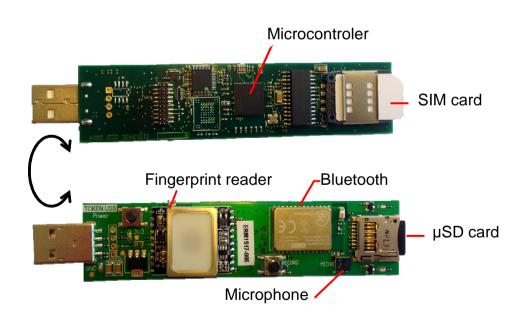
 Concevoir une plateforme PDMS répondant au Paradoxe du Cloud Personnel

4 axes de recherche

- Architectures pour le Cloud Personnel
- Modèles d'administration et mise en oeuvre sécurisée des politiques
- Protocoles décentralisés de gestion de données personnelles
- Implications juridiques, économiques et sociétales

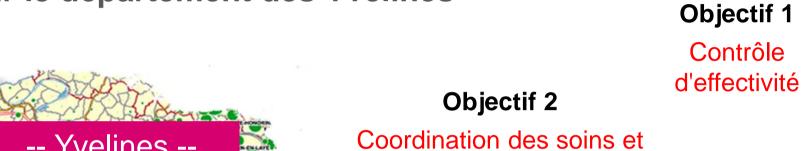
Une volonté d'expérimentation et de transfert

- Une plateforme concrète : PlugDB
- Un IILab (Inria-UVSQ-Hippocad) : OwnCare



PlugDB: un serveur personnel sécurisé

- Stockage de données embarquées, indexation, requêtes, droits d'accès, chiffrement, transactions
- Moteur BD embarquable dans un microcontrôleur sécurisé
 - Verrou: tiny RAM + NAND Flash + requêtes

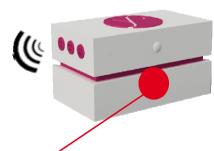


Inria Innovation Lab OwnCare

& application DomYcile (CD78/Hippocad/Petrus)

Déploiement d'un dossier médico-social personnel sur le département des Yvelines

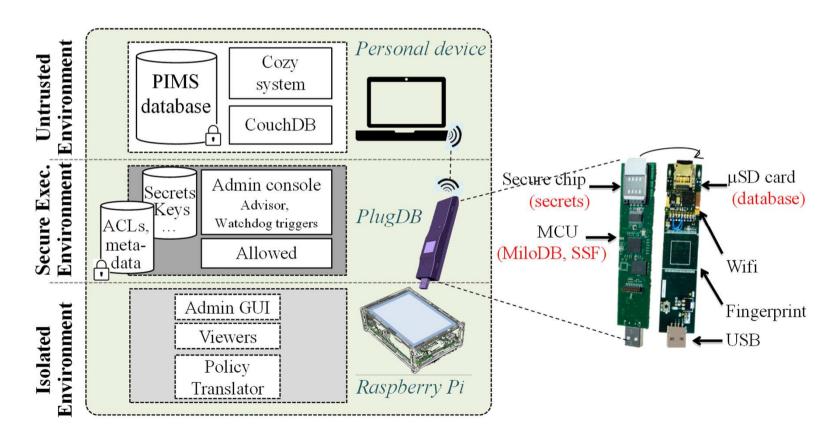



-- Yvelines --8 000 domiciles 262 communes

10.000 patients

des prestations sociales

PlugDB inside



Cozy sécurisé (Cozy Cloud / Petrus)

- Cozy Cloud : leader français du Cloud personnel
- Contributions : sécurisation des données stockées, modèle ad-hoc de contrôle d'accès et d'administration des politiques de partage

Le Cloud Personnel: sujet interdisciplinaire par excellence

Entre ...

- **informaticiens** : challenges à la croisée des SI, de l'IA, de la cryptographie, des algorithmes distribués, des architectures logicielles et matérielles
- ... économistes : autour des modèles économiques liés à l'exploitation des données perso.
- ... et juristes : autour des principes de responsabilité, de privacy-by-design, droit à l'oubli ...

De multiples questions ouvertes par le cloud personnel

- Comment éviter un effet boomerang de la souveraineté (redéfinition des responsabilités) ?
- Quel statut pour les données hébergées relatives à d'autres individus ?
 - 98% of MIT students are happy to trade their friends' email addresses for free pizza... (National Bureau of Economic Research)
- La monétisation des données personnelles comme incitation à la protection ?
- Les données personnelles considérées comme moyen de paiement d'un service ?
- Jusqu'où ouvrir le droit à la récupération des (méta-)données ?
 - o Motif de collecte, période de rétention, transferts ...
- Cloud personnel choisi ou imposé ?
- •

Questions?

PETRUS Project - team
UVSQ / DAVID & INRIA Saclay

https://www.inria.fr/equipes/petrus

https://project.inria.fr/plugdb