

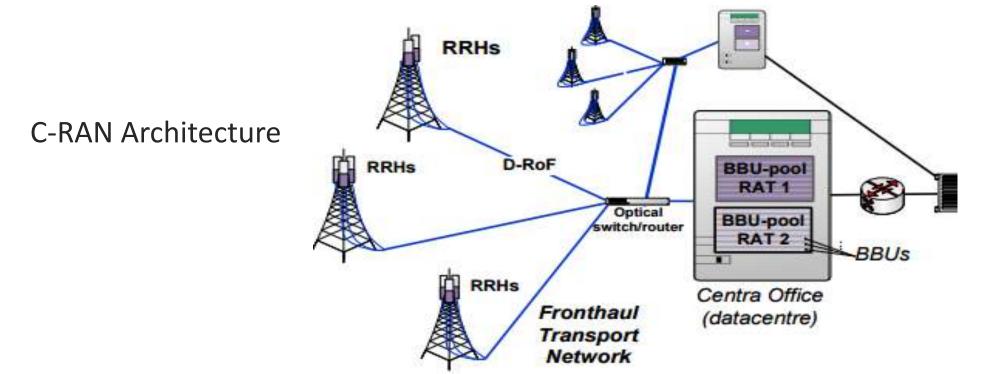
System X ThesisDay@SystemX 2018

Base-Band Unit Function Split Placement for C-RAN

Niezi MHARSI

Philippe Martins¹ (directeur), Makhlouf Hadji² (encadrant)

¹LTCI, Télécom ParisTech, ²IRT SystemX

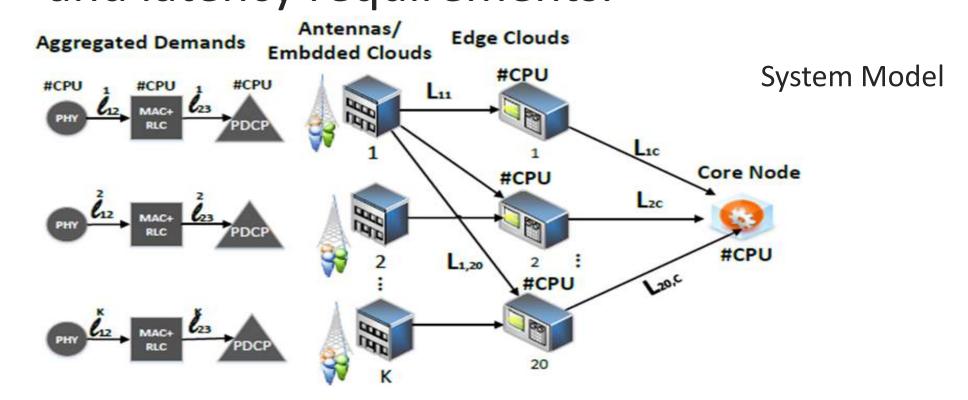

1. CONTEXT

C-RAN (Cloud-Radio Access Network) is a new cellular network architecture considered as a key enabler for the

2. OBJECTIVE

We investigate new algorithms to optimally split BBU functions (PHY, MAC+RLC, PDCP) while meeting jointly the sequencing chains on the physical network in terms of CPU and latency requirements.

next generation mobile networks. This can be achieved by an optimal split/placement BaseBand Unit (BBU) functions.

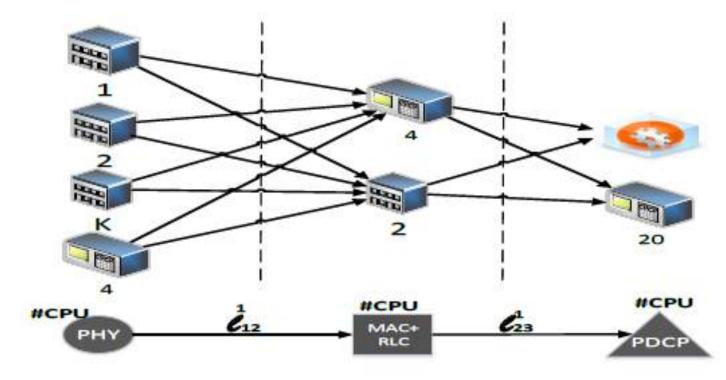

3. BBU FUNCTION SPLIT PLACEMENT ALGORITHM

Integer Linear Programming Formulation

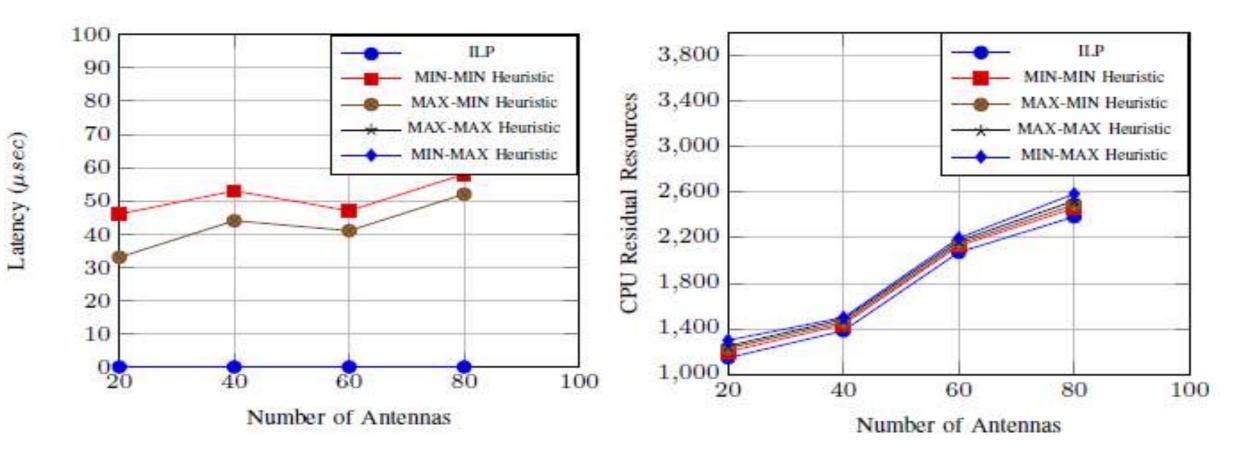
$$\min \sum_{k \in \mathscr{A}} \sum_{j \in \mathscr{V}} \sum_{j' \in \mathscr{P}(j)} \sum_{i \in \{1,2\}} L_{(j,j')} y_{(i,i+1)}^k \sum_{j \in \mathscr{V}} \left(C_j z_j - \sum_{k \in A} \sum_{i \in \mathscr{V}_v} c_i^k x_{i,j}^k \right)$$

 $\sum_{j \in \mathcal{V}_1} \mathbf{1}_{(k,j)} x_{1,j}^k = 0, \forall k \in \mathscr{A}$

 $\sum x_{i,j}^k = 1, \forall k \in \mathscr{A}, \forall i \in \{1,2,3\}$


4. NUMERICAL RESULTS

Algorithms performance comparison: ILP Vs Heuristics

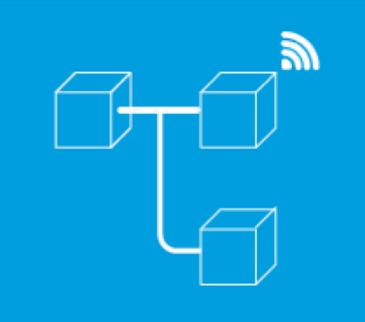

	#Edaa		Euclidean Graph	Random Graph	#Antennas	#Edge Clouds	Heuristic Variant	Heuristic Execution Time (s)	ILP Execution Time
#Antennas	#Edge Clouds	Variant	Cost Gap (%)	Cost Gap (%)			min-min	42.51	
#Antennas	Ciouds				200	10	min-max	-	>12
60	10	min-min	0	3.07			max-min	82.15	
		min-max	0	0			max-max	35.43	
		max-min	2.96	2.62		15	min-min	<1min	>15h
		max-max	0	0			min-max max-min	<2min	
	15	min-min	0	2.79			max-max	43.01s	
		min-max	0	0		20	min-min	<1min	>16h
		max-min	2.24	2.22			min-max	<1min	
		max-max	0	0			max-min	<2min	
	20	min-min	1.88	2.11			max-max	<1min	
		min-max	0	0			•		
		max-min	2.05	1.94	112 14 45 1 44	1	1 2		D
		max-max	0	0	2,1	00 00		····· Min-Min	
80	10	min-min	2.49	3.08	1,8	00		= · = · = Max-Min	
		min-max	0	0	s ^{1,0}			= = = Max-Max	
		max-min	2.64	2.56	5 ^{1,5}	00 00		Min-Max	
		max-max	0	0	tio				1 2 2
	15	min-min	2.92	2.76	Time Executi	00			
		min-max	0	0	E E	00 00			
		max-min	2.3	2.32	e e				
		max-max	0	0	F 6	00		· .	
	20	min-min	2.55	2.28		/			
		min-max	0	0	3	00			
		max-min	1.87	2.0		0			
		max-max	0	0		100	200 3	300 <u>400</u>	500
l					i,		Number of	f Antannas	

$$\begin{split} &\sum_{k \in \mathscr{A}} \sum_{i \in \{1,2,3\}} x_{i,j}^k \times c_i^k \leq C_j, \forall j \in \mathscr{V} \\ &x_{i,j}^k \leq \sum_{i' \in \mathscr{P}(i)} x_{i+1,j'}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V} \\ &\sum_{i' \in \mathscr{P}(i)} y_{(i,i+1);(j,j')}^k = x_{i,j}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V} \\ &\sum_{j \in \mathscr{V}} y_{(i,i+1);(j,j')}^k = x_{i+1,j'}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j' \in \mathscr{P}(j) \\ &\sum_{j \in \mathscr{V}} \sum_{j' \in \mathscr{P}(j)} y_{(i,i+1);(j,j')}^k = 1, \forall k \in \mathscr{A}, \forall i \in \{1,2\} \\ &L_{(j,j')} \times y_{(i,i+1);(j,j')}^k \leq l_{(i,i+1)}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V}, \forall j' \in \mathscr{P}(j) \\ &x_{i,j}^k \leq z_j, \forall j \in \mathscr{V}, \forall k \in \mathscr{A}, \forall i \in \mathscr{V}_v \end{split}$$

A Multi-stage Graph based heuristic

CPU Residual resources and Latency behavior

5. CONCLUSION & FUTURE WORK


Numerical results revealed the efficiency of the proposed approaches (ILP & Heuristics) to attend the optimum in negligible time.

A multi-stage approach example

Future work will consider BBU function split placement when dealing jointly with CPU and radio resource constraints.

J. Liu, S. Zhou, J. Gong, Z. Niu, and S. Xu, "Graph-based framework for flexible baseband function splitting and placement in C-RAN," in IEEE ICC 2015 – Wireless Communications Symposium, 2015

3GPP, "Study on New Radio Access Technology; Radio Access Architecture and Interfaces," 3GPP, TR 38.801 v2.0.0 Release 14, March 2017.

REFERENCES

Scientific domain: Infrastructure and Networks **Program:** Internet of Trust **Project:** Telecommunications and Cloud Services (STC)

Doctoral school: Sciences et technologies de l'information et de la communication (STIC) **Institution:** Université Paris-Saclay

Contacts:

niezi.mharsi@irt-systemx.fr makhlouf.hadji@irt-systemx.fr philippe.martins@telecom-paristech.fr

