QoE optimisation in Software-Defined Networks

Jérémie Leguay Head of Traffic and Network Optimization Team Mathematical and Algorithmic Sciences Lab Huawei FRC, Paris

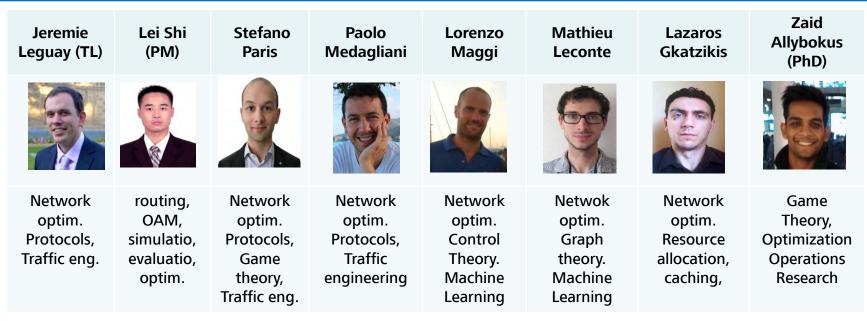
www.huawei.com

February 2018, IRT System X

Network and Traffic Optimization Team

Vision

Solve global, online and data-driven optimization problems into next-generation network controllers



Tools and Skills

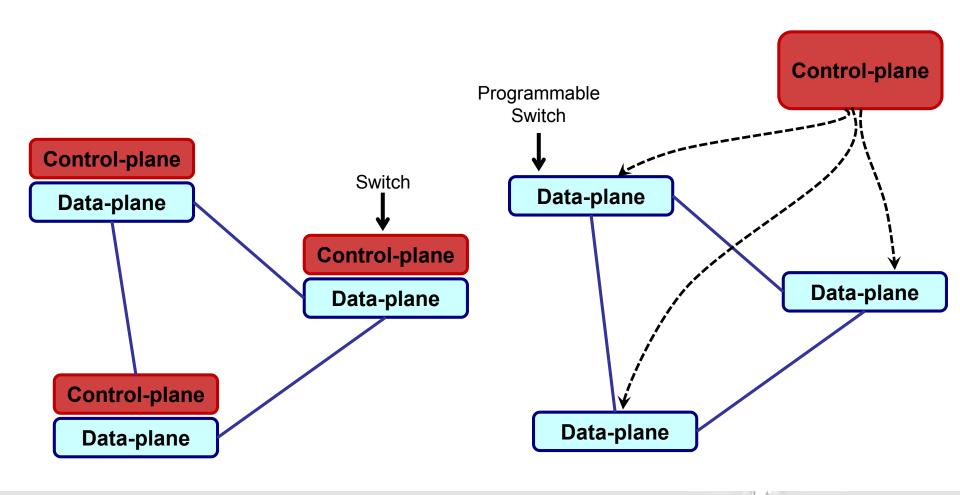
Optimization theory (combinatorial, stochastic), Game theory, Graph theory, Control theory, Statistical Learning, Algorithms.

Topics

Routing, Resource allocation, Placement, Monitoring

The (new) paradigm: SDN

Traditional networking



HUAWEI TECHNOLOGIES CO., LTD.

France Research Center

Page 3

Software-Defined Networking

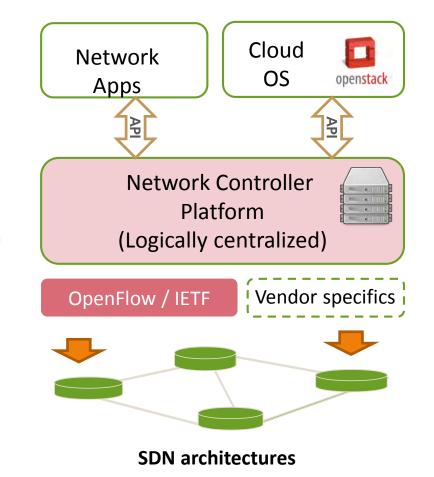
Network Automation and Optimization with SDN

- Main properties of SDN / PCE
 - Offload the control plane to (powerful) external x86 servers
 - Provide network programmability through abstractions
- Operational benefits
 - Advanced automation

O&M 60%

Global optimization and control

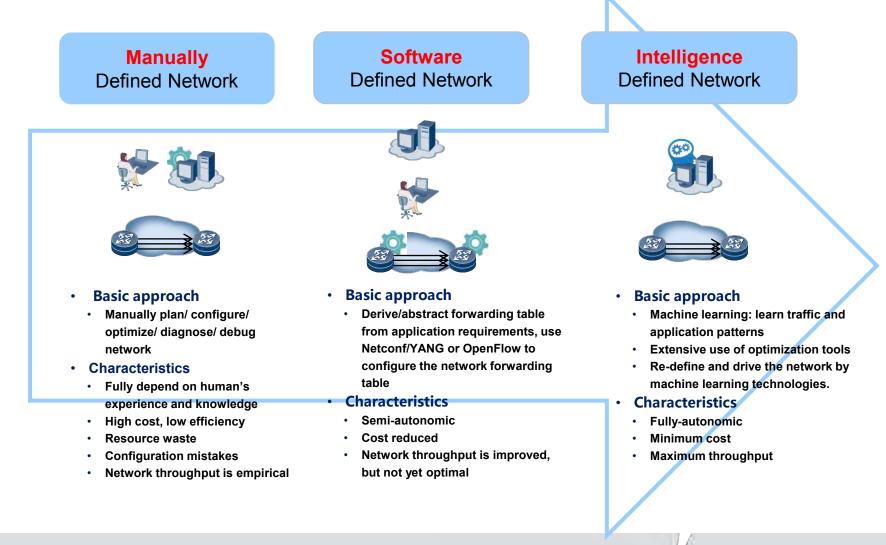
Network efficiency 10 times



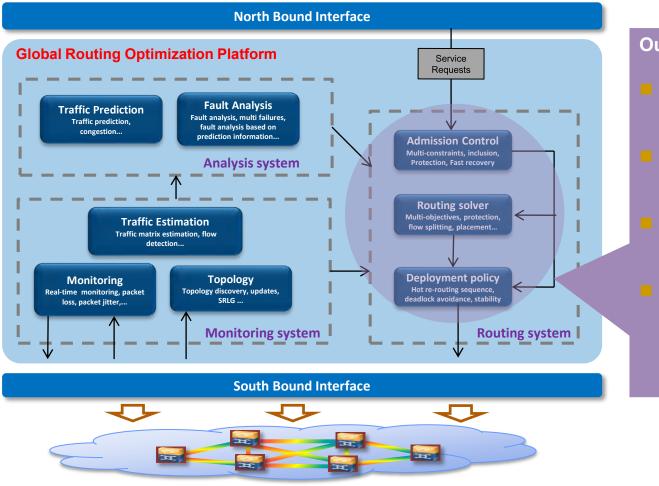
HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 4

Intelligence (ML) Defined Network - Towards Full Autonomic Network



Routing systems in next generation controllers



Our focus

- Online routing optimization
- Real-time and fair resource allocation
- Routing with traffic predictions

Experience-driven routing

Ongoing transformations of network control planes:

- Convergence of monitoring, traffic analysis and routing systems
- (Logically) centralized on powerful software platforms

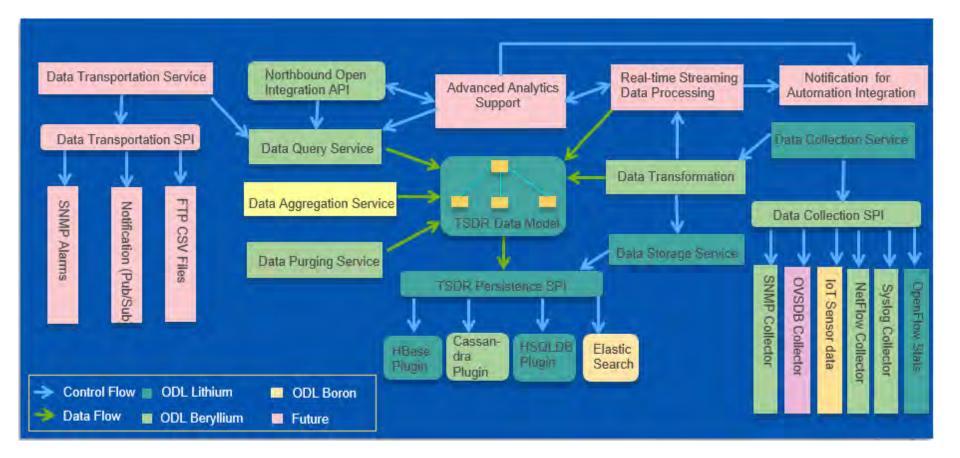
Better algorithms

Real-time, more informed, computer intensive, scalable

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 6

Built-in Machine Learning e.g., Time Series Data Repository in ODL



https://wiki.opendaylight.org/view/Project_Proposals:Time_Series_Data_Repository

Embedded Machine Learning tools are already available in network controllers

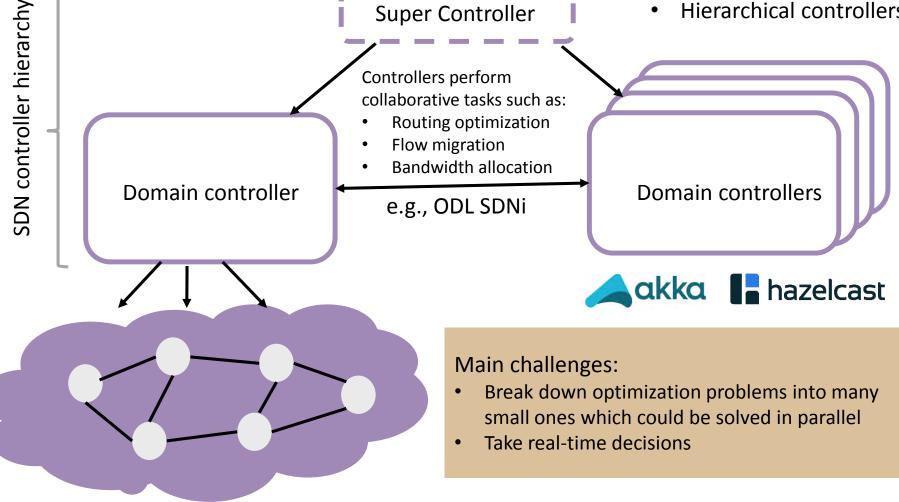
HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 7

Built-in distributed / parallel computing

From routing protocols to distributed routing platforms

Architectural features:

- Multi-domain networks
- Domain controllers are computer grids
- Hierarchical controllers



Presentation outline

- Team introduction
- Short Intro to Video streaming and QoE
- QoE-aware Routing in Software Defined Networks
- QoE prediction with Machine Learning

Video traffic is predominant



Mobile Video Will Generate More Than Three-Quarters of Mobile Data Traffic by 2021

Source: Cisco Visual Networking Index

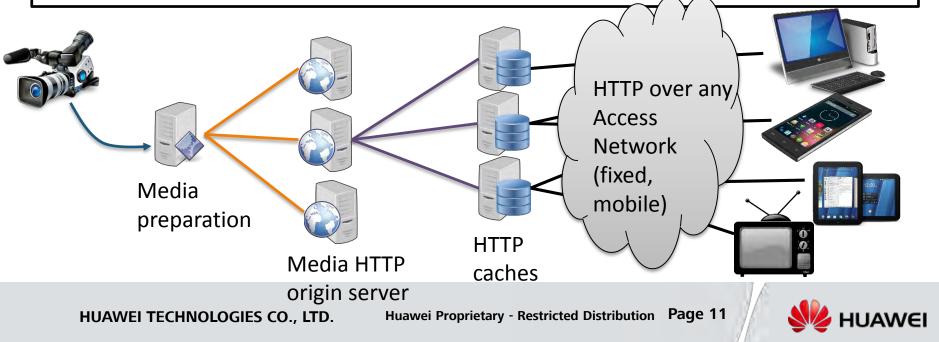


HTTP Adaptive Steaming (HAS)

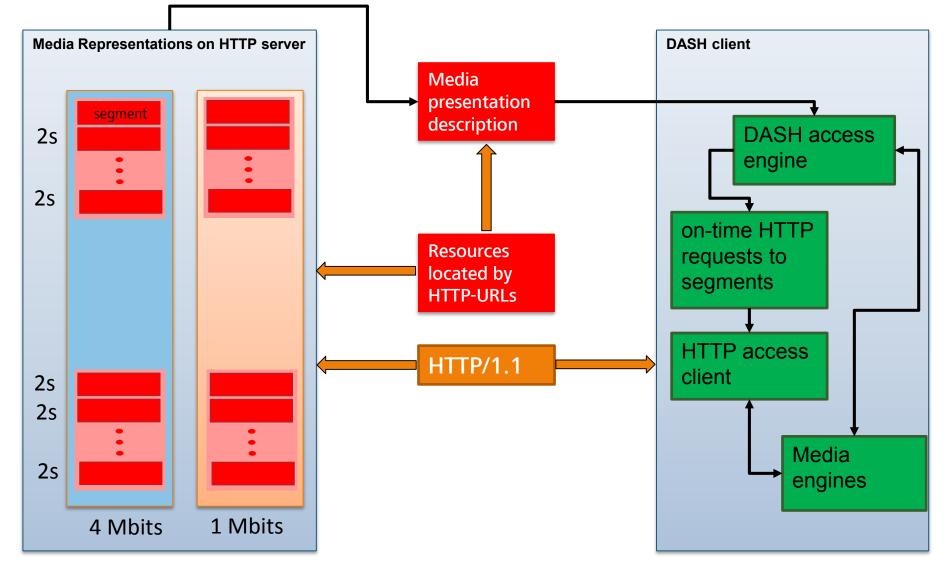
The standard "de facto" for video stream retrieval is DASH

What: Video streaming solution where small pieces of video streams/files (*chunks*) are requested with HTTP and spliced together by the client. Client entirely controls delivery. Why: Reuse widely deployed standard HTTP servers/caches for scalable delivery, e.g. existing Internet CDNs; traverse NAT/Firewalls; simple rate adaptation; fixed-mobile convergence; convergence of services, etc.

A complete description of the available chunks is provided into a Media Presentation Description (MPD) file exposed by the media server and consulted by each client



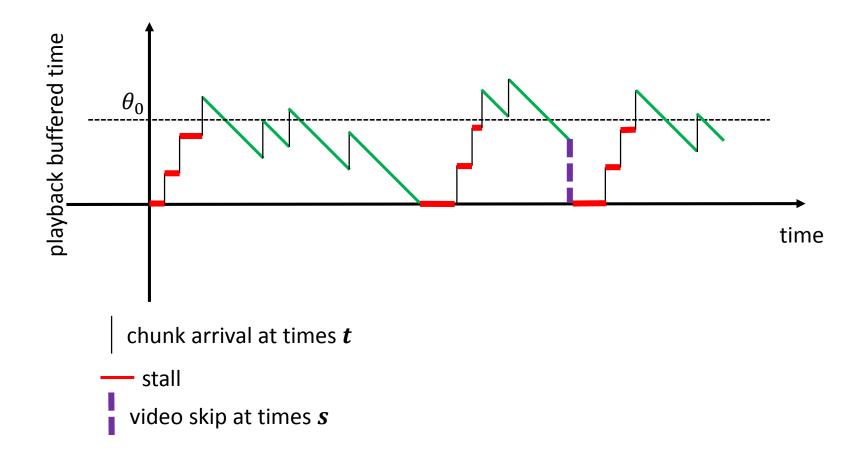
DASH - What is specified and what is not?



HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 12

Buffer playback time evolution



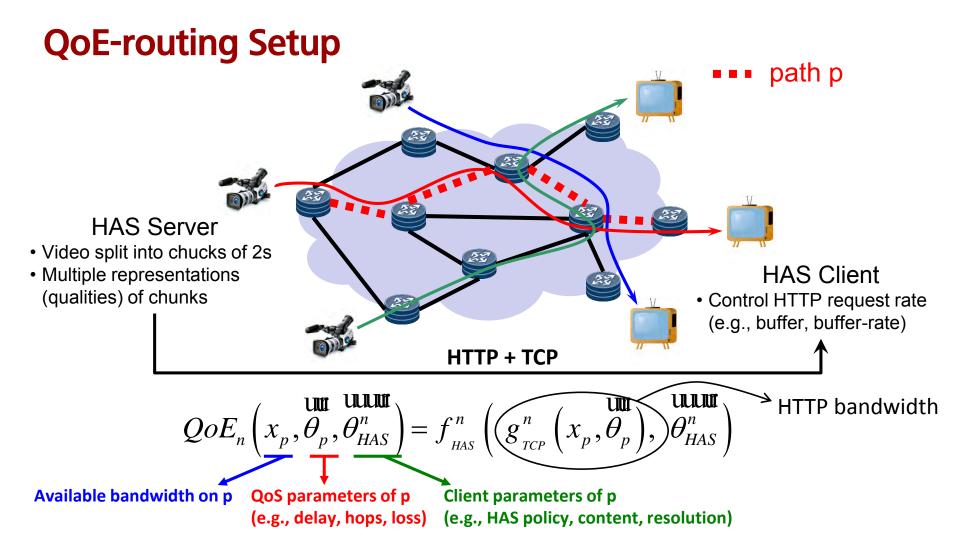
Quality of Experience measures

- **QoE** factors (quantitative measurements)
 - > Average video bitrate of the downloaded chunks.
 - Average bitrate variation: the average of bitrate variations between consecutive chunks
 - Re-buffering ratio: freezing (or stalling) time over the duration of the video session.
- **QoE scores (qualitative measurements)**
 - > **MOS:** Mean Opinion Score

QoE-aware Routing in Software Defined Networks

Giacomo Calvigioni^{*}, Ramon Aparicio-Pardo^{*}, Lucile Sassatelli^{*}, Jeremie Leguay⁺, Stefano Paris⁺, Paolo Medagliani⁺

(*) I3S Lab, Universite Cote d'Azur & CNRS
 (+) Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei



- Client/Server side: HAS control policies maximize the QoE, but are limited by resource allocation decisions (e.g., available bandwidth, latency, loss)
- SDN controller decisions play a key role for QoE maximization.

Mapping QoE to QoS: two ways

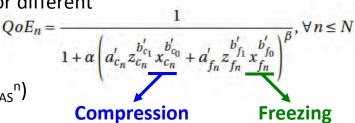
- Implicit functions (e.g., SVR, decision trees, etc.)
 - Requires a large amount of data (or time)
 - More difficult to introduce in an optimization model
- Explicit functions (e.g., log-logistic regression model)
 - Requires a fine knowledge of the system
 - Easy to introduce in an optimization model

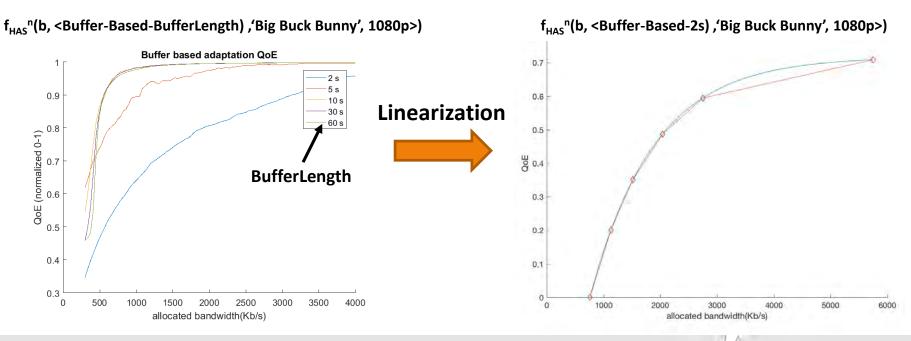
Approach in this work

QoE Modeling – Linearization of $f_{HAS}^{n}(b, \theta_{HAS}^{n})$

We want to express compression x_c and freezing x_f (i.e., rebuffering) as explicit functions of QoS metrics such as available bandwidth

- Simulation of log-logistic model from ITU Rec. P.1202.2. for different
 - □ <HAS policy, content type, resolution> $\rightarrow \theta_{HAS}^n$
 - □ Available bandwidth → b (bandwidth seen by HTTPS)
- Piecewise linearization of the measured $QoE_n = f_{HAS}^n(b, \theta_{HAS}^n)$



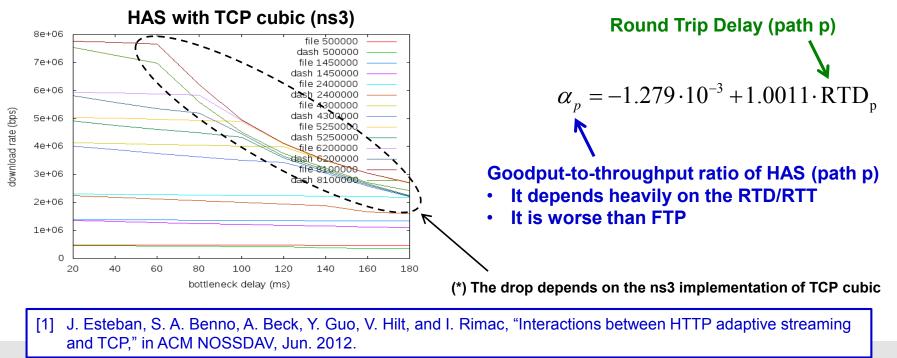


TCP–HAS Interplay

- Chunks download in *HAS* can be modeled as *short-lived TCP connections* [1]
 - > On-off pattern (sequential HTTP req. every few seconds)
 - > Mainly slow-start (specially at start/end of download)
 - > High impact of packet loss

Congestion window very often decreases!

• *Penalty* for downloading video using HAS (small requests) vs. FTP (long requests):





Maximal HAS QoE-based Routing (Max-HQR) problem formulation

Parameter	Meaning
$a_k^d \in \mathbf{j}_{\geq 0}$	Slope of the straight-line section $k \in K_d$ for the utility of demand $d \in D$
$b_k^d \in \mathbf{j}_{\geq 0}$	y-intercept of the straight-line section $k \in K_d$ for the utility of demand $d \in D$
$r_d^{\min} \in \mathbf{j}_{\geq 0}$	Required average bandwidth to get worst HAS representation allowed for demand $d \in D$
$r_d^{\max} \in \mathbf{j}_{\geq 0}$	Required average bandwidth to get best HAS representation allowed for demand $d \in D$
$C_e \in \mathbf{j}_{\geq 0}$	Capacity of link $e \in E$

Variable	Meaning
$u^d \in \mathbf{j}_{\geq 0}$	Utility value (QoE) of demand $d \in D$
$x_p^d \in \mathbf{j}_{\geq 0}$	Available bandwidth on path $p \in P$ to serve demand $d \in D$
$z_p^d \in \{0,1\}$	Whether path p is used to serve demand d
$z_{dpi} \in \left\{0,1\right\}$	Whether $i \in \mathbb{Z}_{\geq 0}$ competitive videos shares the bottleneck of path $p \in P$ used to serve demand $d \in D$
$n_e \in {\not\!\!\!c}_{\geq 0}$	Number of competitive videos sharing link $e \in E$

Max-HQR – Mathematical Formulation

Assumption:

Flow rates are determined by TCP fair-share $x_p^d = \frac{c_e}{i} \Rightarrow U_{dpi} = U_d \left(\alpha_p \cdot \frac{\min\{c_e : e \in E\}}{i} \right)$ of bottleneck link (not controlled) $\sum_{d \in D} \sum_{p \in P_d} \sum_{i>0} U_{dpi} \cdot Z_{dpi}$ Utility (QoE) maximization max Number of competing flows $\{z,n\}$ s.t. $\sum_{p \in P_d} z_p^d = 1$ $\forall d \in D$ \leftarrow Single path $\sum_{a}\sum_{b}z_{p}^{d}=n_{e}$ $\forall e \in E$ \leftarrow Number of competing videos flows $d \in D$ $p \in P$ $\left\{ \begin{array}{ll} z_p^d \cdot n_e \end{array} \right\} \leq \frac{C_e}{C} \sum_{i>0} i \cdot z_{dpi} & \forall d \in D, \forall p \in P_d, \forall e \in E_p \\ \\ \sum_{i>0} z_{dpi} = 1 & \forall d \in D, \forall p \in P_d \end{array}$ Number of flows on the bottleneck of a demand $\sum_{i>0} z_{dpi} = 1$ Non-linear constraint Not efficiently solvable

Max-QoE – Mathematical Formulation

Note

 $d \in D \ p \in P_d$

• Control of the bandwidth reserved to HAS connections (in addition to path selection)

$$\max_{\{x,z,u\}} \sum_{d \in D} u^d \quad \longleftarrow \quad \text{Utility (QoE) maximization}$$

s.t.
$$\sum \sum x_p^d \le c_e \qquad \qquad \forall e \in E \quad \longleftarrow \quad \text{Capacity constraint}$$

$$a_{k}^{d} \left(\sum_{p \in P_{d}} \alpha_{p} \cdot x_{p}^{d} \right) + b_{k}^{d} \ge u^{d} \quad \forall d \in D, k \in K_{d} \quad \longleftarrow \quad \text{Rate allocation} \\ \sum_{p \in P_{d}} \alpha_{p} \cdot x_{p}^{d} \ge r_{d}^{\min} \cdot z_{p}^{d} \qquad \forall d \in D \\ \sum_{p \in P_{d}} \alpha_{p} \cdot x_{p}^{d} \le r_{d}^{\max} \cdot z_{p}^{d} \qquad \forall d \in D \quad \qquad \text{Range of allocated bandwidth} \\ \sum_{p \in P_{d}} z_{p}^{d} = 1 \qquad \forall d \in D \quad \longleftarrow \quad \text{Single path} \end{cases}$$

Max-QoE – Lagrangian Relaxation

$$\max_{\{x,z,u\}} -L(x,u,z,\lambda) = \sum_{d\in D} u^d - \sum_{d\in D} \sum_{p\in P_d} \lambda_p \cdot x_p^d + \sum_{e\in E} \lambda_e \cdot c_e$$

s.t.
$$a_k^d \left(\sum_{p \in P_d} \alpha_p \cdot x_p^d \right) + b_k^d \ge u^d$$

$$\sum_{p \in P_d} \alpha_p \cdot x_p^d \ge r_d^{\min} \cdot z_p^d$$

$$\sum_{p \in P_d} \alpha_p \cdot x_p^d \le r_d^{\max} \cdot z_p^d$$

$$\sum_{p \in P_d} z_p^d = 1$$

Coupling constraints have been eliminated

Subproblems can be solved independently

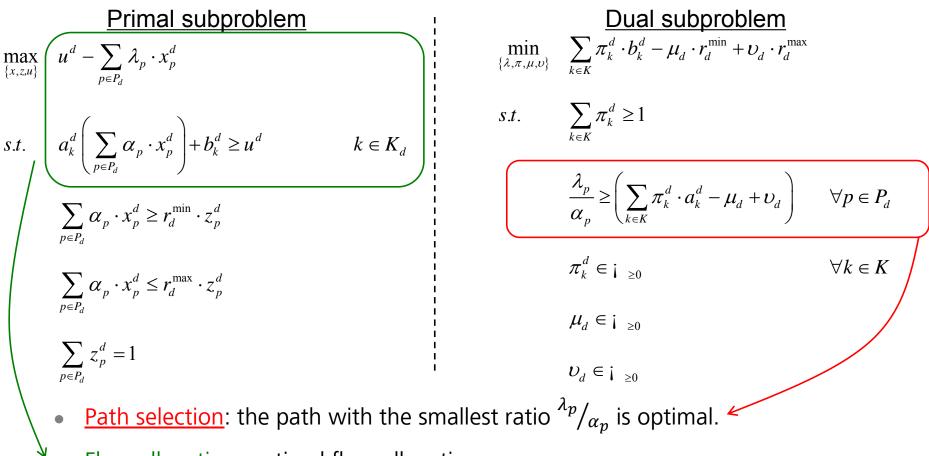
 $\forall d \in D, k \in K_d$

 $\forall d \in D$

 $\forall d \in D$

 $\forall d \in D$

Max-QoE – Lagrangian Relaxation



- <u>Flow allocation</u>: optimal flow allocation:
 - → if $a_{k+1} \leq \frac{\lambda_p}{\alpha_p} \leq a_k$ → the bitrate of the intersection point of the linear pieces k and k+1
 - $\Rightarrow \quad \text{if } {}^{\lambda_p}/_{\alpha_p} \ge a_0 \text{ (or } {}^{\lambda_p}/_{\alpha_p} \le a_{|K|-1}) \Rightarrow \text{ the worst bitrate } r_k^{min} \text{(or the best bitrate } r_k^{max})$

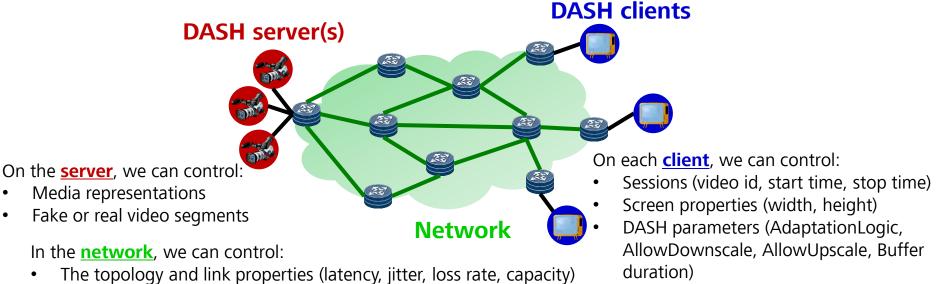
Dual Subgradient based on Lagrangian Relaxation (DGLR)

- Initialization:
 - $\ \ \, \text{LB}=-\infty; \ \lambda_e=0, \forall e\in E$
 - → Compute K shortest paths for each demand $\forall d \in D$ (delay as link metric)
- While $(t \le N_{max})$ and $(\text{dual gap} \le \vartheta)$
 - 1. Solve |D| subproblems (compute $L_d^{(t)}(x,\lambda)$, $\forall d \in D$)
 - » Select the path p with the smallest ratio $r_p(t) = \frac{\lambda_p(t)}{\alpha_p(t)} = \frac{\sum_{e \in p} \lambda_e(t)}{\alpha_p(t)} / \frac{\lambda_p(t)}{\alpha_p(t)}$
 - » Perform the flow allocation x (compare r_p with slopes a_k)
 - 2. Aggregate subproblems: $L^{(t)}(x,\lambda) = \sum_{d \in D} L_d^{(t)}(x,\lambda) + \sum_{e \in E} \lambda_e c_e$
 - 3. Update lower bound: $LB = \begin{cases} L^{(t)}(x,\lambda) & if L^{(t)}(x,\lambda) > LB \\ LB & if L^{(t)}(x,\lambda) \le LB \end{cases}$
 - 4. Compute the gradient vector: $G_e(t) = \sum_{d \in D} \sum_{p \in P_e} x_p^d(t) c_e$
 - 5. Update multipliers: $\lambda_e(t+1) = max\{0, \lambda_e(t) + \gamma \cdot G_e(t)\}$
 - 6. Update iteration counter: t = t + 1;

Constant stepsize

Fully controllable environment at network and streaming levels

- > Adaptive Multimedia Streaming Simulator Framework (AMust) in NS3
- > Implements a HTTP client and server for DASH
- > Integrates LibDASH (reference software of ISO/IEC MPEG-DASH standard)



- TCP parameters (e.g., congestion control algorithm, segment size)
- Drop policy (e.g., Red)
- ..

Large set of DASH policies: Rate based, Buffer based, Rate and Buffer based, AlwaysLowest, no adaptation, custom.

Code is available here: https://github.com/sassatelli/QoErouting

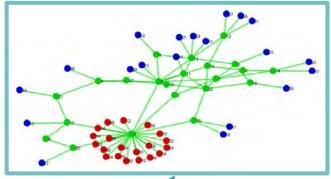
• Scenario

- > 3 representative movies:
 - » Big Buck Bunny (BBB) cartoon with a mix of low and high motion scenes
 - » The Swiss Account (TSA) sport video with high motion
 - » Red Bull Play Street (RBPS) sport documentary with regular motion
- > **<u>GEANT network</u>** (22 nodes and 36 links)
 - » downsized link capacity to 10 Mbps, one-way latency in [1; 10] ms
 - » DASH servers are attached to 1 node
 - » DASH clients are randomly attached to others.

Performance benchmarks

- > Optimal solution solving the **MILP** with CPLEX
- > QoS routing solution using LARAC [1]
 - » Each demand is routed over the residual capacity using solving a min cost with QoS constraint problem (e.g, latency)
 - » Lagrange Relaxation Based Aggregated Cost (LARAC) algorithm

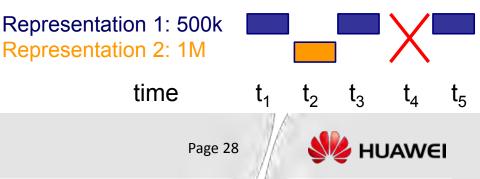
[1] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko, "Lagrange relaxation based method for the QoS routing problem," in IEEE INFOCOM, 2001.



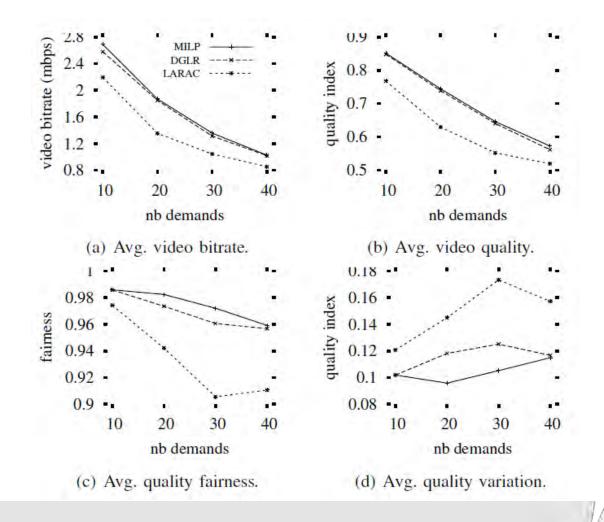
- Performance indicators
 - > Average video bitrate of the downloaded chunks.
 - Average quality variation: the standard deviation of the quality index which quantifies quality changes over the different downloaded chunks.
 - Average video quality [0,1]: Average on all downloaded chunks of a normalized quality index indicating to which representation they belong.
 - Average quality fairness [0,1]: Jain's index over the average quality index of all video sessions.
 - Re-buffering ratio: freezing (or stalling) time over 20%
 the duration of the video session.

(500k + 1M + 500k + 500k)/4 (500k + 500k)/2

(0.5 + 1 + 0.5 + 0.5)/4

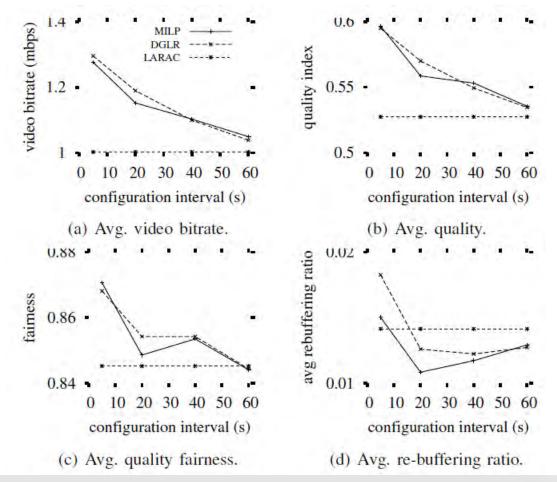


• Static traffic scenario on GEANT (100s – all video sessions active)



• Dynamic scenario on GEANT (160s – all video sessions active)

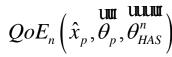
> 60 demands with mean duration 30s (Poisson distributed).



Future Works

- 1. The QoE depends on the available bandwidth, but...
- **^**,
- The model of QoE is calibrated before the optimization
- The optimization decides the available bandwidth using the QoE model

Model calibration



Bandwidth **x**_p is fixed

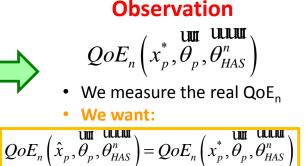
We get linear coefficients of QoE_n

We measure QoE_n

Optimization

 $\max_{\{x,z\}} QoE_n \left(x_p, \theta_p, \theta_{HAS}^n \right)$

- s.t. some constraints
- We get the **optimal x***_p



Model recalibration

- 1. Allocate a minimum reserved bandwidth to each session
 - 1. Requires a proper test environment (no support from ns3 at the moment)
- 2. Machine learning for model recalibration
 - > We can use the new observation to learn the unknown parameters of the QoE model

HUAWEI TECHNOLOGIES CO., LTD.

Page 31

QoE prediction with Machine Learning

Vladislav Vasilev, Jérémie Leguay, Stefano Paris, Lorenzo Maggi, Merouane Debbah

Mathematical and Algorithmic Sciences Lab Huawei FRC, Paris

www.huawei.com

The importance of QoS for QoE

- QoS is a poor predictor of experienced QoE
- QoE is the only relevant parameter for end users
 - 3 main parameters to measure user-perceived video^[1]:
 - **Rebuffering ratio:** how often rebuffering occurs during playback.
 - Average video bitrate: How much information is received in the play out buffer.
 - Average video bitrate variation: how much the player increases or decreases the bitrate every time it switches bitrate during playback.
 - Monitoring <u>rebuffering</u> and <u>bitrate change</u> ratios is a good metric to quantify video abandonment rates for short videos such as YouTube
- However,
 - network controllers only deal with QoS parameters
 - Most of video traffic is now encrypted

Can we predict QoE based on QoS observations and exploit this prediction for routing?

[1] H. Nam, K.-H. Kim and H. Schulzrinne. QoE Matters More Than QoS: Why People Stop Watching Cat Videos. In Proc. Infocom, 2016

Production of high-fidelity data

- Fully controllable environment at network and streaming levels
 - Adaptive Multimedia Streaming Simulator Framework (AMust) in NS3
 - Implements a HTTP client and server for DASH
 - Integrates LibDASH (reference software of ISO/IEC MPEG-DASH standard)

On each client, we can control:

- Sessions (video id, start time, stop time)
- Screen properties (width, height)
- DASH parameters (AdaptationLogic, AllowDownscale, AllowUpscale, Buffer duration)

DASH server (s)

In the network, we can control:

On the server, we can control:

Media representations

Fake or real video segments

- The topology and link properties (latency, jitter, loss rate, capacity)
- TCP parameters (e.g., congestion control algorithm, segment size)
- Drop policy (e.g., Red)

•

٠

Large set of DASH policies: Rate based, Buffer based, Rate and Buffer based, AlwaysLowest, no adaptation, custom.

Network

Simulating a large number of scenarios, statistics for 80k video sessions (public)

HUAWEI TECHNOLOGIES CO., LTD.

DASH clients

Research questions in this work

- Network-level measurements
 - TCP statistics: number of packets, avg packet delay, avg packet jitter, avg packet loss
 - Downloading rate (sampled every 2s): average, 5, 10, 25, 50, 75, 90, 95 quantiles, standard deviation
 - Inter-arrival times of segment requests: average, 5, 10, 25, 50, 75, 90, 95 quantiles, standard deviation
 - Network congestion: number of concurrent streams, bottleneck capacity, bottleneck delay, bottleneck loss
 - Player caracteristics: DASH policy, client resolution, max video buffer.

• QoE factors

- Average video bitrate
- Average video bitrate variation
- Rebuffering ratio

Question 1: Can we predict QoE from QoS measures on each stream?

Question 2: Can we improve the prediction when context information is available?

- Well correlated with the network rate

The difficult one

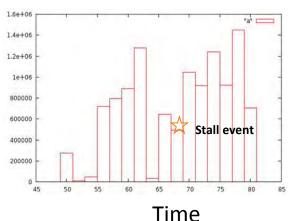
火 HUAWEI

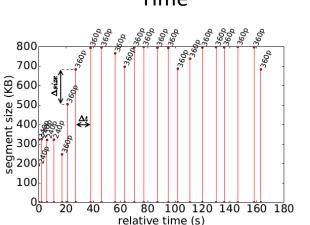
Preliminaries: Data Characteristics

Index	Name	Туре
2	NbClients	Simulation
3	BottleneckBW	Simulation
4	BottleneckDelay	Simulation
5	BottleneckLoss	Simulation
6	DASHPolicy	Simulation
7	ClientResolution	Simulation
8	RequestDuration	Input
9	TCPOutputPacket	Input
10	TCPOutputDelay	Input
11	TCPOutputJitter	Input
12	TCPOutputPloss	Input
13	TCPInputPacket	Input
14	TCPInputDelay	Input
15	TCPInputJitter	Input
16	TCPInputPloss	Input
17	TCPInputRetrans	Input
18	StdInputRate	Input
[19:27]	[0,5,10,25,50,75,90,95,100]	Input
	InputRateVariation	
28	StdInterATimesReq	Input
[29:37]	[0,5,10,25,50,75,90,95,100]	Input
	InterATimesReq	
38	StartUpDelay	Hidden
39	AvgDownloadRate	Hidden
40	StdDownloadRate	Hidden
41	AvgBufferLevel	Hidden
42	StdBufferLevel	Hidden
43	StallEvents	Hidden
44	RebufferingRatio	Target
45	StallLabel	Target
46	TotalStallingTime	Hidden
47	AvgTimeStallingEvents	Hidden
48	AvgQualityIndex	Hidden
49	AvgVideoBitRate	Target
50	AvgVideoQualityVariation	Target
51	AvgDownloadBitRate	Hidden

Network rate Sampled over bins of 2s

Inter-arrival times of HTTP requests In mobile networks, all HTTP(s) requests go though HTTP proxies

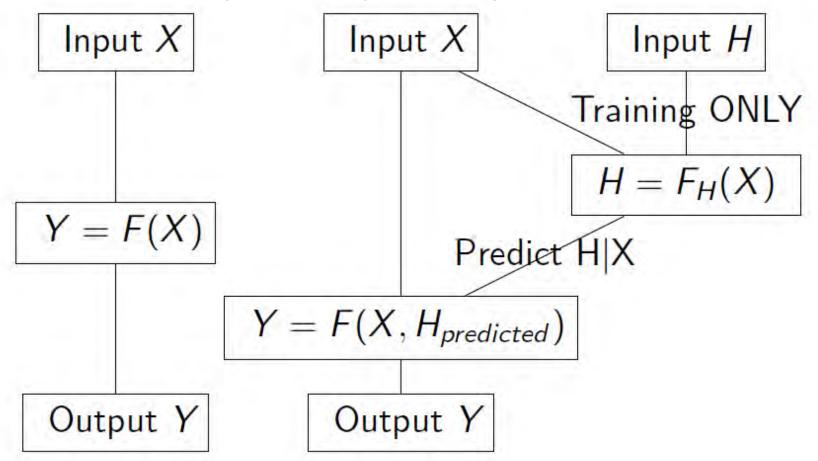




- RebufferingRatio=0 \rightarrow No staling-
- 0 < RebufferingRatio < 0.1 \rightarrow Mild staling
- RebufferingRatio $\geq 0.1 \rightarrow$ Severe staling

Preliminaries: Using Hidden Variables

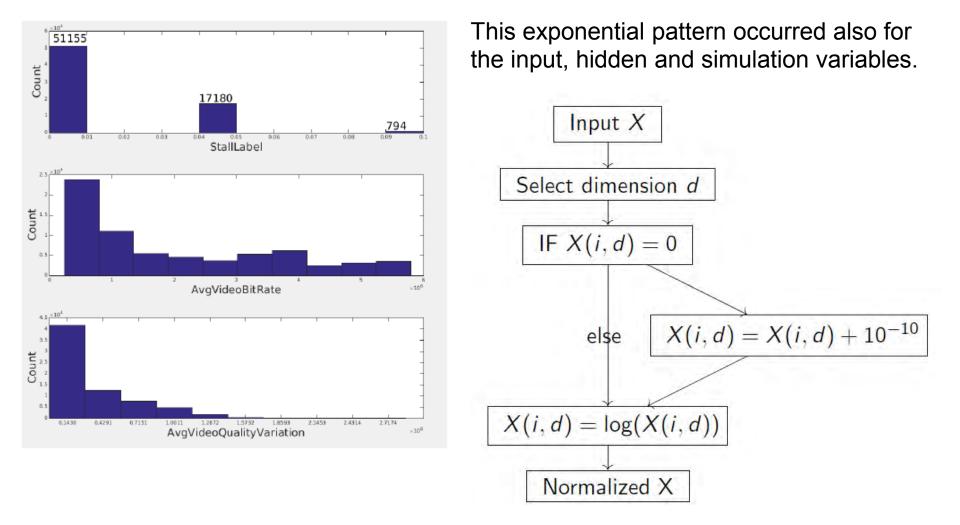
i.e. variables we may access only at training phase



Bagged Regression Tree and Bagged Random Forest are used for the additional variable prediction based on whether they are continuous or discrete.

Preliminaries: Data Characteristics

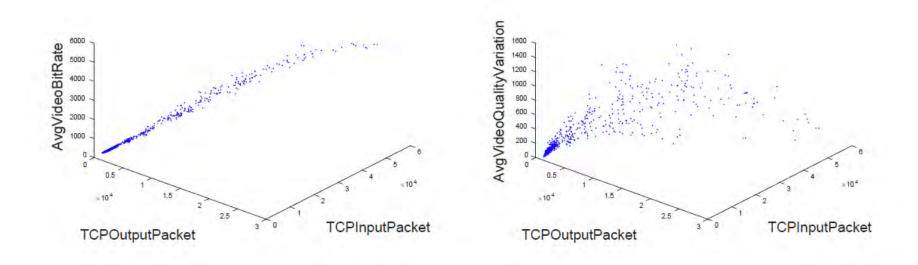
The distribution of the target variables is somewhat exponential.



HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 38

Preliminaries: Data Characteristics



The figures show the relations of 2 variables with high mutual information with 2 QoE variables. Clearly there are locally linear dependencies in the data.

Average Bitrate and Average Bitrate variations are the easy ones

StallLabel Prediction: State of the art. Random Forest (RF)

RF	Tr. Acc.	Val. Acc.
0	0.96178	0.95525
0.05	0.7585	0.73587
0.1	0.43874	0.34211

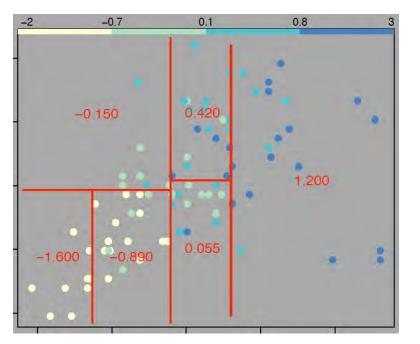
Random Forest (RF) pruned to minimum leaf size of 50.

The performance on the SevereStall class is practically unacceptable.

- A RF is a bagging of Decision Tree(DT)models.
- Each DT at a leaf node greedily selects and splits an input variable given all the accumulated splits from the root to the leaf.
- The bagging minimizes the effect of local optimality cause by the greedy split procedure.

[Louppe], [Dimopoulos].

StallLabel Prediction: RF Analysis



There are 2 most commonly occurring problems with RF.

- The RF greedy split procedure might result in low quality local optimum.
- The RF's rectangular decision regions have boundaries parallel to the basis of the dimensions, which could fail to capture some linear dependencies.

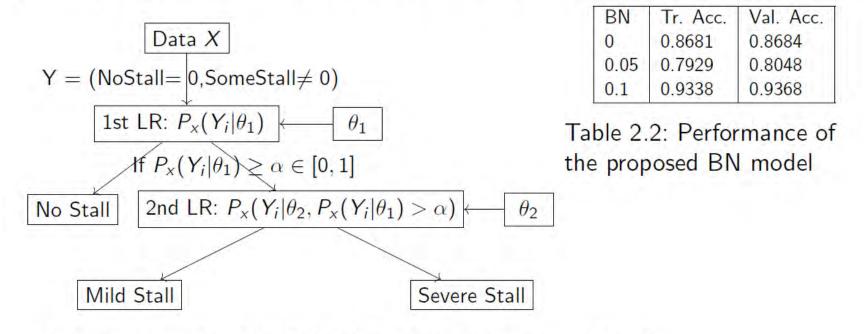
Confirming, that the RF decision regions are not adequate for our data.

- There are many correlations between the input variables.
- If we change the data basis to a new basis specified by the parameters of a Logistic Regression (LR) classier we get an improvement on the RF.

[Bishop],[Ng]

StallLabel Prediction: BN definition

Define the BN in Fig. 2.1. If the two LRs are trained separately the performance is degraded. Also note that θ_1 and θ_2 are not d-separated [Koller] only when mild or severe stall is observed.



 $P_{x}(Y,\theta_{1},\theta_{2}) = \left[P_{x}(Y_{i}|\theta_{1})P(\theta_{1})\right] \cdot \left[P_{x}(Y_{i}|\theta_{2},P_{x}(Y_{i}|\theta_{1}) > \alpha)P(\theta_{2})\right]$

Figure 2.1: Bayesian Network using LR models.

HUAWEI TECHNOLOGIES CO., LTD.

Huawei Proprietary - Restricted Distribution Page 42

StallLabel Prediction: Results

Cross.val. BN		Tr.acc. 0	Tr.acc. 0.05	Tr.acc. 0.1	Val.acc. 0	Val.acc. 0.05	Val.acc. 0.1
Input only	Mean	0.8685	0.7946	0.9376	0.8665	0.7982	0.9267
	STD	0.0004	0.0014	0.0031	0.0018	0.0045	0.0122
Added predicted simulation	Mean	0.8691	0.7963	0.9409	0.8691	0.7996	0.9316
	STD	0.0004	0.0008	0.0031	0.0021	0.0036	0.0017
Added actual simulation	Mean	0.8689	0.7975	0.9396	0.8676	0.8023	0.9304
	STD	0.0001	0.0010	0.0027	0.0023	0.0033	0.0018
Added predicted hidden	Mean	0.8758	0.8012	0.9434	0.8735	0.7983	0.9366
	STD	0.0018	0.0033	0.0019	0.0034	0.0101	0.0079
Added actual hidden	Mean	0.9000	0.8399	0.9543	0.8990	0.8466	0.9530
	STD	0.0012	0.0023	0.0026	0.0020	0.0091	0.0113

BN Stall Label. Using variables [38:42,48:51] from Tab. I.

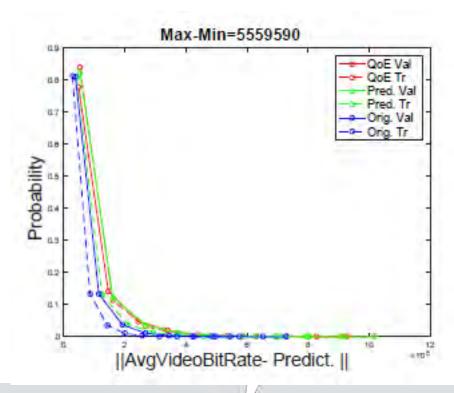
HUAWEI TECHNOLOGIES CO., LTD. Huawei Proprietary - Restricted Distribution Page 43

VIDEO QUALITY

Case		TR.	Val.
Input only	Mean	5.8139	6.8786
	STD	0.0599	0.0172
Simul. Predicted	Mean	5.5994	6.6195
	STD	0.0524	0.0105
Simul. Actual	Mean	4.7183	6.3470
	STD	0.0757	0.0234
Hidden/Simul. Predicted	Mean	5.3013	6.4341
	STD	0.0756	0.0164
Hidden/Simul. Actual	Mean	3.4870	4.6005
	STD	0.0604	0.0127
Normalization for all values	1.0e+04 *	1	

Video Quality. Using variables [38:42,44,45,51] from Tab. I.

The figure on the right shows the AvgVideoBitRate absolute difference in the prediction as a distribution.

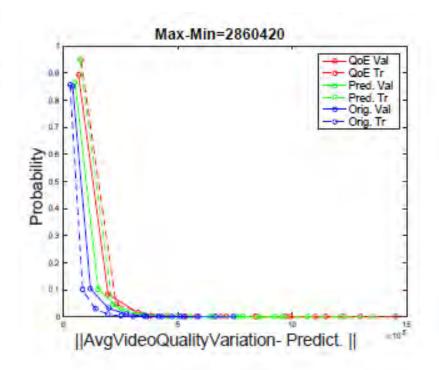


VIDEO QUALITY VARIATION

Case		TR.	Val.
Input only	Mean	4.3335	5.1738
	STD	0.0233	0.0697
Simul. predicted	Mean	3.7510	4.6414
	STD	0.0253	0.0597
Simul. Actual	Mean	2.8882	4.1241
	STD	0.0179	0.0568
Hidden/Simul. Predicted	Mean	3.6783	4.6099
	STD	0.0265	0.0618
Hidden/Simul. Actual	Mean	2.6231	3.7784
	STD	0.0134	0.0384
Normalization for all values	1.0e+04 *		

Video Quality Variation. Using variables [38:42,44,45,51] from Tab. I.

The figure on the right shows the AvgVideoBitRate absolute difference in the prediction as a distribution.



Conclusion

- Focused on the StallLabel variable: Proposition of a Bayesian network to well balance class accuracies.
- Proposition to make intermediate prediction for additional (hidden) variables to improve accuracy.
- We show that adding network-level information (overall load or bottleneck characteristics) improves QoE prediction

REFERENCES

- C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
- D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. MIT press, 2009.
- V. Voloshin, Introduction to Graph and Hypergraph Theory, Nova Science Publishers, Inc.,2009
- G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, K. Papagiannaki, Measuring Video QoE from Encrypted Traffic, ACM, 513–526, 2016
- G. Louppe, Understanding random forests: From theory to practice, arXiv:1407.7502, 2014
- Andrew Ng, CS229 Lecture notes,pp:1-3,2000
- V. Vasilev, G. Iliev, V. Poulkov A. Mihovska, A Latent Variable Clustering Method for Wireless Sensor Networks, Asilomar , 2016
- V. Vasilev, Chromatic Polynomial Heuristics for Connectivity Prediction in Wireless Sensor Networks, ICEST 2016, Ohrid, Macedonia, 28-30 June, 2016
- V. Vasilev, Algorithms and Heuristics for Data Mining in Sensor Networks, LAP LAMBERT Academic Publishing, 22 December 2016, ISBN:987-3330025219

Future directions on QoE-aware networking

- Extend ML models to improve QoE predictions
- Use ML models for QoE-based routing
- Control bandwidth allocation or AQM parameters
- Network assisted DASH policies

Selected publications (network optimization for video traffic)

- Quality of Experience-based Routing of Video Traffic for Overlay and ISP Networks. Giacomo Calvigioni, Ramon Aparicio-Pardo, Lucile Sassatelli, Jeremie Leguay, Stefano Paris, Paolo Medagliani. *IEEE INFOCOM 2018*.
- Predicting QoE Factors with Machine Learning. Vladislav Vasilev, Jeremie Leguay, Stefano Paris, Lorenzo Maggi, Merouane Debbah. *IEEE ICC 2018.*
- Overlay Routing for Fast Video Transfers in CDN. Paolo Medagliani, Stefano Paris, Jérémie Leguay, Lorenzo Maggi, Xue Chuangsong, Haojun Zhou. IEEE IM 2017.
- Scalable Request Routing for VR-ready CDNs. Pierre-Louis Poirion, Jérémie Leguay, Ruosi Liu. ICIN 2018.
- Adapting Caching to Audience Retention Rate: Which Video Chunk to Store? Lorenzo Maggi, Lazaros Gkatzikis, Georgios Paschos, Jeremie Leguay. Elsevier Computer Communications. January 2018.

