Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

Richard Combes¹

¹Centrale-Supélec / L2S, France

SDN Days, 2017

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

.

Classical Bandits

Outline

Bandits: A primer

Applications

Some basic tools

Classical Bandits

Generic Bandits

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some basic t

Classical Bandits

A first example: sequential treatment allocation

- ► There are T patients with the same symptoms awaiting treatment
- Two treatments exist, one is better than the other
- Based on past successes and failures which treatment should you use?

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some basic tools

Classical Bandits

The model

- ▶ At time n, choose action $x_n \in \mathcal{X}$, observe feedback $y_n(x_n) \in \mathcal{Y}$, and obtain reward $r_n(x_n) \in \mathbb{R}^+$.
- ▶ "Bandit feedback": rewards and feedback depend on actions (often $y_n \equiv r_n$)
- Admissible algorithm:

$$x_{n+1} = f_{n+1}(x_0, r_0(x_0), y_0(x_0), ..., x_n, r_n(x_n), r_n(y_n))$$

Performance metric: regret

$$R(T) = \max_{x \in \mathcal{X}} \mathbb{E} \left[\sum_{n=1}^{T} r_n(x) \right] - \mathbb{E} \left[\sum_{n=1}^{T} r_n(x_n) \right].$$
oracle
oracle
your algorithm

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applicatio

Bandit taxonomy: adversarial vs stochastic

Stochastic Bandit:

- Game against a stochastic environment
- ▶ Unknown parameters $\theta \in \Theta$
- $(r_n(x))_n$ is i.i.d with expectation θ_x

Adversarial Bandit:

- Game against a non-adaptive adversary
- ▶ For all x, $(r_n(x))_n$ arbitrary sequence in \mathcal{X}
- At time 0, the adversary "writes down $(r_n(x))_{n,x}$ in an envelope"

Engineering problems are mainly stochastic

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Some basic t

Ciassical bandis

Independent vs correlated arms

- ▶ Independent arms: $\Theta = [0, 1]^K$
- ▶ Correlated arms: $\Theta \neq [0,1]^K$: choosing 1 gives information on 1 and 2

Correlation enables (sometimes much) faster learning.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some basic t

Classical Bandits

Bandit taxonomy: cardinality of the set of arms

Discrete Bandits:

- $\mathcal{X} = \{1, ..., K\}$
- All arms can be sampled infinitely many times
- ▶ Regret $O(\log(T))$ (stochastic), $O(\sqrt{T})$ (adversarial)

Infinite Bandits:

- $ightharpoonup \mathcal{X} = \mathbb{N}$, Bayesian setting (otherwise trivial)
- Explore o(T) arms until a good one is found
- ▶ Regret: $O(\sqrt{T})$.

Continuous Bandits:

- $\mathcal{X} \subset \mathbb{R}^d$ convex, $x \mapsto \mu_{\theta}(x)$ has a *structure*
- Structures: convex, Lipschitz, linear, unimodal (quasi-convex) etc.
- Similar to derivative-free stochastic optimization
- ▶ Regret: $O(\mathbf{poly}(d)\sqrt{T})$.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some Dasic tool

Classical Bandits

Bandit taxonomy: regret minimization vs best arm identification

Sample arms and output the best arm with a given probability, similar to PAC learning

Fixed budget setting:

- ▶ T fixed, sample arms $x_1, ..., x_T$, and output \hat{x}^T
- Easier problem: estimation + budget allocation
- ▶ Goal: minimize $\mathbb{P}[\hat{x}^T \neq x^*]$

Fixed confidence setting:

- δ fixed, sample arms $x_1, ..., x_\tau$ and output \hat{x}^τ
- Harder problem: estimation + budget allocation + optimal stopping (τ is a stopping time)
- ▶ Goal: minimize $\mathbb{E}[\tau]$ s.t. $\mathbb{P}[\hat{\mathbf{x}}^{\tau} \neq \mathbf{x}^*] \leq \delta$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applicati

Some basic to

Classical Bandits

Outline

Bandits: A prime

Applications

Some basic tools

Classical Bandits

Generic Bandits

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some basic to

Classical Bandits

Example 1: Rate adaptation in wireless networks

Adapting the modulation/coding scheme to the radio environment ¹

▶ Rates: r₁, r₂, ..., r_K

▶ Success probabilities: θ_1 , θ_2 , ..., θ_K

▶ Throughputs: μ_1 , μ_2 , ..., μ_K

Structure: unimodality + $\theta_1 > \theta_2 > \cdots > \theta_K$.

¹R. Combes, A. Proutiere, D. Yun, J. Ok, and Y. Yi. "Optimal rate sampling in 802.11 systems", IEEE INFOCOM 2014

Multi-Armed
Bandits:
A Novel Generic
Optimal Algorithm
and Applications to
Networking

R. Combes

Bandits: A primer

Applications

Classical Bandits

Example 2: Shortest path routing

- Choose a path minimizing expected delay ²
- ▶ Stochastic delays: $X_i(n)$ ~ Geometric(θ_i)
- ▶ Path $x \in \{0,1\}^d$, expected delay $\sum_{i=1}^d x_i/\theta_i$.
- ▶ Hop-by-hop feedback: $X_i(n)$, for $\{i : x_i(n) = 1\}$

²S. Talebi, Z. Zou, R. Combes, A. Proutiere, M. Johansson, "Stochastic Online Shortest Path Routing: The Value of Feedback", IEEE Trans. Automatic Control, 2017

Multi-Armed
Bandits:
A Novel Generic
Optimal Algorithm
and Applications to
Networking

R. Combes

Bandits: A primer

Applications

Some basic to

Classical Bandits

Example 3: Learning to Rank (search engines)

- Given a query, N relevant items, L display slots 3
- ➤ A user is shown L items, scrolls down and selects the first relevant item
- One must show the most relevant items in the first slots.
- θ_n probability of clicking on item n (independence between items is assumed)
- ▶ Reward $r(\ell)$ if user clicks on the ℓ -th item, and 0 if the user does not click

³R. Combes, S. Magureanu, A. Proutiere and C. Laroche,

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

ome basic to

Classical Bandits

eneric Band

Example 4: Ad-display optimization

- Users are shown ads relevant to their queries⁴
- ▶ Announcers $x \in \{1, ..., K\}$, with μ_x click-through-rate and budget per unit of time c_x
- Bandit with budgets: each arm has a budget of plays
- Displayed announcer is charged per impression/click

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications
Some basic tools

Classical Bandits

⁴R. Combes, C. Jiang and R. Srikant, "Bandits with Budgets: Regret Lower Bounds and Optimal Algorithms", SIGMETRICS 2015

Outline

Bandits: A primer

Applications

Some basic tools

Classical Bandits

Generic Bandits

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

andits: A primer

Applications

Some basic tools

Classical Bandits

Optimism in the face of uncertainty

- Replace arm values by upper confidence bounds
- ▶ "Index" $b_x(n)$ such that $b_x(n) \ge \theta_x$ with high probability
- Select the arm with highest index $x_n \in \arg\max_{x \in \mathcal{X}} b_x(n)$
- ► Analysis idea:

$$\mathbb{E}[t_X(T)] \leq \underbrace{\sum_{n=1}^T \mathbb{P}[b_{X^*}(n) \leq \theta^*]}_{o(\log(T))} + \underbrace{\sum_{n=1}^T \mathbb{P}[x_n = x, b_X(n) \geq \mu^*]}_{dominant term}.$$

Almost all algorithms in the literature are optimistic (sic!)

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A prin

Some basic tools

Classical Bandits

Information theory and statistics

- ▶ Distribtions P, Q with densities p and q w.r.t a measure m
- ► Kullback-Leibler divergence:

$$D(P||Q) = \int_{x} p(x) \log \left(\frac{p(x)}{q(x)}\right) m(dx),$$

Pinsker's inequality:

$$\sqrt{\frac{D(P||Q)}{2}} \geq TV(P,Q) = \frac{1}{2} \int_{X} |p(x) - q(x)| m(dx).$$

If P, Q ~ Ber(p), Ber(q):

$$D(P||Q) = p \log \left(\frac{p}{q}\right) + (1-p) \log \left(\frac{1-p}{1-q}\right)$$

Also (Pinkser + inequality $\log(x) \le x - 1$): $2(p - q)^2 \le D(P||Q) \le \frac{(p - q)^2}{q(1 - q)}$

The KL-divergence is ubiquitous in bandit problems

Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

Multi-Armed

R. Combes

ранин**ь. А** рин

Some basic tools

Classical Bandits

Regret Lower Bounds: general technique

- ▶ Decision x, two parameters θ , λ , with $x^*(\lambda) = x \neq x^*(\theta)$.
- Consider consider an algorithm with $R^{\pi}(T) = \log(T)$ for all parameters (unformly good):

$$\mathbb{E}_{\theta}[t_{x}(T)] = O(\log(T)) \ , \ \mathbb{E}_{\lambda}[t_{x}(T)] = T - O(\log(T)).$$

Markov inequality:

$$\mathbb{P}_{\theta}[t_x(T) \geq T/2] + \mathbb{P}_{\lambda}[t_x(T) < T/2] \leq O(T^{-1}\log(T)).$$

- ▶ $\mathbf{1}\{t_x(T) \le T/2\}$ is a hypothesis test, risk $O(T^{-1}\log(T))$
- Hence (Neyman-Pearson / Tsybakov):

$$\sum_{x} \mathbb{E}_{\theta}[t_{x}(T)] KL(\theta_{x}, \lambda_{x}) \geq \log(T) - O(\log(\log(T))).$$

KL divergence of the observations

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Some basic tools

Classical Bandits

Concentration inequalities: Chernoff bounds

- Building indexes requires tight concentration inequalities
- Chernoff bounds: upper bound the MGF
- $X = (X_1, ..., X_n)$ independent, with mean μ , $S_n = \sum_{n'=1}^n X_{n'}$
- G such that $\log(\mathbb{E}[e^{\lambda(X_n-\mu)}]) \leq G(\lambda)$, $\lambda \geq 0$
- ► Generic technique:

$$\mathbb{P}[S_n - n\mu \ge \delta] = \mathbb{P}[e^{\lambda(S_n - n\mu)} \ge e^{\lambda\delta}]$$

$$\le e^{-\lambda\delta} \mathbb{E}[e^{\lambda(S_n - n\mu)}] \text{ (Markov)}$$

$$= \exp(nG(\lambda) - \lambda\delta) \text{ (independence)}$$

$$\le \exp\left(-n\max_{\lambda \ge 0} \{\lambda\delta n^{-1} - G(\lambda)\}\right).$$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Some basic tools

Conorio Randite

Concentration inequalities: Chernoff and Hoeffding's inequality

- ▶ Bounded variables: if $X_n \in [a, b]$ a.s then $\mathbb{E}[e^{\lambda(X_n \mu)}] \le e^{\lambda^2(b-a)^2/8}$ (Hoeffding lemma)
- Hoeffding's inequality:

$$\mathbb{P}[S_n - n\mu \ge \delta] \le \exp\left(-\frac{2\delta^2}{n(b-a)^2}\right)$$

- ▶ Subgaussian variables: $\mathbb{E}[e^{\lambda(X_n-\mu)}] \leq e^{\sigma^2\lambda^2/2}$, similar
- ► Bernoulli variables: $\mathbb{E}[e^{\lambda(X_n-\mu)}] = \mu e^{\lambda(1-\mu)} (1-\mu)e^{-\lambda\mu}$
- Chernoff's inequality:

$$\mathbb{P}[S_n - n\mu \ge \delta] \le \exp(-nKL(\mu + \delta/n, \mu))$$

Pinsker's inequality: Chernoff is stronger than Hoeffding. Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

. .

Some basic tools

Concentration inequalities: variable sample size and peeling

- In bandit problems, the sample size is random and depends on the samples themselves
- ▶ Intervals $\mathcal{N}_k = \{n_k, ..., n_{k+1}\}$, $\mathcal{N} = \cup_{k=1}^K \mathcal{N}$
- ▶ Idea: $Z_n = e^{\lambda(S_n n\mu)}$ is a positive sub-martingale:

$$egin{aligned} \mathbb{P}[\max_{n \in \mathcal{N}_k}(S_n - \mu n) &\geq \delta] &= \mathbb{P}[\max_{n \in \mathcal{N}_k} Z_n \geq e^{\lambda \delta})] \ &\leq e^{-\lambda \delta} \mathbb{E}[Z_{n_{k+1}}] ext{ (Doob's inequality)} \ &= \exp(-\lambda \delta + n_{k+1} G(\lambda)) \ &\leq \exp\left(-n_{k+1} \max_{\lambda \geq 0} \{\lambda \delta n_{k+1}^{-1} - G(\lambda)\}
ight). \end{aligned}$$

Peeling trick (Neveu): union bound over k, $n_k = (1 + \alpha)^k$.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

P.P. -----

Some basic tools

Classical Bandits

Outline

Bandits: A prime

Applications

Some basic tools

Classical Bandits

Generic Bandits

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some basic to

Classical Bandits

The Lai-Robbins bound

- Actions $\mathcal{X} = \{1, ..., K\}$
- ▶ Rewards $\theta = (\theta_1, ..., \theta_K) \in [0, 1]^K$
- ▶ Uniformly good algorithm: $R(T) = O(\log(T))$, $\forall \theta$

Theorem (Lai '85)

For any uniformly good algorithm, and x s.t $\theta_x < \theta^*$ we have:

$$\lim\inf_{T\to\infty}\frac{\mathbb{E}[t_X(T)]}{\log(T)}\geq\frac{1}{\mathit{KL}(\theta_X,\theta^*)}$$

▶ For $x \neq x^*$, apply the generic technique with:

$$\lambda = (\theta_1, ..., \theta_{x-1}, \theta^* + \epsilon, \theta_{x+1}, ..., \theta_K)$$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

. .

Classical Bandits

The Lai-Robbins bound

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

ripplications

Classical Bandits

Classical bandits: algorithms

- Select the arm with highest index $x_n \in \arg\max_{x \in \mathcal{X}} b_x(n)$
- ► UCB algorithm (Hoeffding's inegality):

$$b_{x}(n) = \underbrace{\hat{ heta}_{x}(n)}_{ ext{empirical mean}} + \underbrace{\sqrt{\frac{2\log(n)}{t_{x}(n)}}}_{ ext{exploration bonus}}$$

KL-UCB algorithm (using Garivier's inequality):

$$b_{x}(n) = \max\{q \leq 1 : \underbrace{t_{x}(n) \textit{KL}(\hat{\theta}_{x}(n), q)}_{\text{likelihood ratio}} \leq \underbrace{f(n)}_{\text{log(confidence level}^{-1})}\}.$$

with
$$f(n) = \log(n) + 3\log(\log(n))$$
.

Multi-Armed
Bandits:
A Novel Generic
Optimal Algorithm
and Applications to
Networking

R. Combes

Bandits: A primer

Application

Some basic too

Classical Bandits

Classical bandits: regret analysis

Theorem (Auer'02)

Under algorithm UCB, for all x s.t $\theta_x < \theta^*$:

$$\mathbb{E}[t_{\mathsf{X}}(T)] \leq \frac{8\log(T)}{(\theta_{\mathsf{X}} - \theta^{\star})^2} + \frac{\pi^2}{6}.$$

Theorem (Garivier'11)

Under algorithm KL-UCB, for all x s.t $\theta_x < \theta^*$ and for all $\delta < \theta^* - \theta_x$:

$$\mathbb{E}[t_{\mathsf{x}}(T)] \leq \frac{\log(T)}{\mathsf{KL}(\theta_{\mathsf{x}} + \delta, \theta^{\star})} + C\log(\log(T)) + \delta^{-2}.$$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Classical Bandits

Outline

Bandits: A prime

Applications

Some basic tools

Classical Bandits

Generic Bandits

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Some basic to

Classical Bandits

The model

- ▶ A finite set of arms \mathcal{X} , a parameter set Θ
- ▶ An unknown parameter $\theta \in \Theta$
- At time step n, select arm x, observe feedback $Y(n,x) \sim \nu(\theta(x))$ and receive reward $\mu(x,\theta)$
- ▶ Observations $(Y(n,x))_n$ are i.i.d. $\forall x$.
- Performance metric: regret

$$R^{\pi}(T,\theta) = T \max_{\mathbf{x} \in \mathcal{X}} \mu(\mathbf{x},\theta) - \sum_{t=1}^{I} \mathbb{E}(\mu(\mathbf{x}(t),\theta)).$$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Classical Bandits

Classical bandit (Lai, 1985):

- ▶ Set of arms $\mathcal{X} = \{1, ..., |\mathcal{X}|\}$
- ▶ Parameter set $\Theta = [0, 1]^{|\mathcal{X}|}$
- ▶ Reward function: $\mu(x, \theta) = \theta(x)$
- ▶ Observations: $Y(n, x) \sim Ber(\theta(x))$
- Model for sequential treatment allocation.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

P. P. -----

Como basio to

Classical Bandits

Linear bandit (Dani, 2008):

- ▶ Set of arms $\mathcal{X} \subset \mathbb{R}^d$ finite
- ▶ Parameter set $\theta \in \Theta$ iff $\theta(x) = \langle \phi, x \rangle$, $\forall x$
- ▶ Reward function: $\mu(x, \theta) = g(\theta(x))$, g link function
- ▶ Observations: $Y(n, x) \sim \mathcal{N}(\theta(x), 1)$
- Stochastic version of linear / combinatorial optimization.
- Applications: routing, channel assignment, recommender systems etc.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

111

Classical Bandits

Dueling bandits (Komiyama, 2015):

- ▶ Set of arms $\mathcal{X} = \{(i, j) \in \{1, ..., d\}^2\}$
- ▶ Parameter set $\Theta \subset [0,1]^{d \times d}$ preference matrices
- ▶ *i* preferred to *j* w.p. $\theta(i,j) > \frac{1}{2}$, i^* Condorcet winner.
- ▶ Reward function: $\mu((i,j),\theta) = \frac{1}{2}(\theta(i^*,i) + \theta(i^*,j) 1),$
- ▶ Observations: $Y(n, x) \sim Ber(\theta(x))$
- Model for ranking using pairwise comparisons
- Applications: tournaments, learning to rank

$$\begin{pmatrix} 0.5 & 0.7 & 0.9 & 0.8 \\ 0.3 & 0.5 & 0.3 & 0.1 \\ 0.1 & 0.7 & 0.5 & 0.9 \\ 0.2 & 0.9 & 0.1 & 0.5 \end{pmatrix}$$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Classical Bandits

Combinatorial semi-bandits (Cesa-Bianchi, 2012):

- ▶ Set of arms $\mathcal{X} \subset \{0,1\}^d$
- ▶ Parameter set $\theta \in \Theta$ iff $\theta(x) = (\phi(1)x(1), \dots, \phi(d)x(d)), \forall x$
- ▶ Reward function: $\mu(x,\theta) = \sum_{i=1}^{d} \phi(i)x(i)$
- ▶ Observations: $Y(n, x) \in \{0, 1\}^d$ with independent components and mean $\theta(x)$
- Combinatorial optimization with detailed feedback.
- Applications: routing w. link feedback, channel assignment, etc.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

, ippiioatione

Classical Bandits

Regret lower bound

Theorem

Consider π a uniformly good algorithm. For any $\theta \in \Theta$, we have:

$$\lim\inf_{T\to\infty}\frac{R^\pi(T,\theta)}{\ln\,T}\geq \textit{\textbf{C}}(\theta),$$

where $C(\theta)$ is the value of the optimization problem:

$$\underset{\eta(x) \ge 0, x \in \mathcal{X}}{\text{minimize}} \sum_{x \in \mathcal{X}} \eta(x) (\mu^{\star}(\theta) - \mu(x, \theta)) \tag{1}$$

subject to
$$\sum_{x \in \mathcal{X}} \eta(x) D(\theta, \lambda, x) \ge 1$$
, $\forall \lambda \in \Lambda(\theta)$, (2)

where

$$\Lambda(\theta) = \{\lambda \in \Theta : D(\theta, \lambda, x^{\star}(\theta)) = 0, x^{\star}(\theta) \neq x^{\star}(\lambda)\}.$$

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Classical Bandits

The OSSB algorithm

```
s(0) \leftarrow 0, N(x, 1), m(x, 1) \leftarrow 0, \forall x \in \mathcal{X}
                                                                                              {Initialization}
for t = 1, ..., T do
     Compute the optimization problem (1)-(2) solution (c(x, m(t)))_{x \in \mathcal{X}}
     where m(t) = (m(x, t))_{x \in \mathcal{X}}
     if N(x,t) > c(x,m(t))(1+\gamma) \ln t, \forall x then
           s(t) \leftarrow s(t-1)
           x(t) \leftarrow x^*(m(t))
                                                                                              {Exploitation}
     else
           s(t) \leftarrow s(t-1) + 1
           \overline{X}(t) \leftarrow \arg\min_{x \in \mathcal{X}} \frac{N(x,t)}{c(x,m(t))}
           X(t) \leftarrow \arg\min_{x \in \mathcal{X}} N(x, t)
           if N(\underline{X}(t), t) \leq \varepsilon s(t) then
                 x(t) \leftarrow X(t)
                                                                                                {Estimation}
           else
                 x(t) \leftarrow \overline{X}(t)
                                                                                               {Exploration}
           end if
     end if
     {Update statistics}
     Select arm x(t) and observe Y(x(t), t)
     m(x, t+1) \leftarrow m(x, t), \forall x \neq x(t)
     N(x, t+1) \leftarrow N(x, t), \forall x \neq x(t)
     m(x(t), t+1) \leftarrow \frac{Y(x(t), t) + m(x(t), t) N(x(t), t)}{M(x(t), t) + 1}
     N(x(t), t+1) \leftarrow N(x(t), t) + 1
end for
```

Multi-Armed
Bandits:
A Novel Generic
Optimal Algorithm
and Applications to
Networking

R. Combes

Bandits: A primer

7 ippiiodiio110

Some basic tools

Classical Bandits

OSSB is asymptotically optimal

We use the following natural assumptions.

- A1 Observations are either Bernoulli or Gaussian
- A2 For all x, $(\theta, \lambda) \mapsto D(x, \theta, \lambda)$ is continuous at all points where it is not infinite
- A3 For all x, the mapping $\theta \to \mu(x,\theta)$ is continuous
- A4 The solution to problem (1)-(2) is unique

Theorem

Under A1-A4, the regret of $\pi = OSSB(\varepsilon, \gamma)$ with $\varepsilon < \frac{1}{|\mathcal{X}|}$ verifies:

$$\limsup_{T \to \infty} \frac{R^{\pi}(T)}{\ln T} \leq C(\theta)F(\varepsilon, \gamma, \theta),$$

with $F(\varepsilon, \gamma, \theta) \to 1$ as $\varepsilon \to 0$ and $\gamma \to 0$ for all θ .

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Somo bacio te

Classical Bandits

OSSB: elements of analysis

Element 1: show that in the exploitation phase, the optimal arm is selected with high probability.

Lemma

Under A1, there exists a function G such that for all $t \ge 1$:

$$\sum_{t\geq 1} \mathbb{P}\left(\sum_{x\in\mathcal{X}} N(x,t) D(m(t),\theta,x) \geq (1+\gamma) \ln t\right) \leq G(\gamma,|\mathcal{X}|).$$

Proof: Chernoff bound + Doob's maximal inequality + multi-dimensional peeling.

Multi-Armed
Bandits:
A Novel Generic
Optimal Algorithm
and Applications to
Networking

R. Combes

Bandits: A primer

Some basic to

Classical Bandits

OSSB: elements of analysis

Element 2: show that, when θ is well estimated, so is $c(\theta)$.

Lemma

Under A1-A4, the optimal value $\theta \mapsto C(\theta)$ and the solution $\theta \mapsto c(\theta) = (c(x, \theta))_{x \in \mathcal{X}}$ are continuous at θ .

Proof: similar to Berge's theorem with an additional difficulty as the feasible set is not compact.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Classical Bandits

OSSB: elements of analysis

Element 3: show that the number of exploration / estimation rounds where θ is not well estimated is finite in expectation. Idea: after s such rounds, $N(x,t) \ge \epsilon s$ by construction.

Lemma

Let $x \in \mathcal{X}$ and $\epsilon > 0$. Define \mathcal{F}_t the σ -algebra generated by $(Y(x(s),s))_{1 \leq s \leq t}$. Let $\mathcal{S} \subset \mathbb{N}$ be a (random) set of rounds. Assume that there exists a sequence of (random) sets $(\mathcal{S}(s))_{s \geq 1}$ such that (i) $\mathcal{S} \subset \cup_{s \geq 1} \mathcal{S}(s)$, (ii) for all $s \geq 1$ and all $t \in \mathcal{S}(s)$, $N(x,t) \geq \epsilon s$, (iii) $|\mathcal{S}(s)| \leq 1$, and (iv) the event $t \in \mathcal{S}(s)$ is \mathcal{F}_t -measurable. Then for all $\delta > 0$:

$$\sum_{t\geq 1} \mathbb{P}(t\in\mathcal{S}, |m(x,t)-\theta(x)|>\delta) \leq \frac{1}{\epsilon\delta^2}.$$

Proof: Chernoff bound + Doob's optional stopping theorem.

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Como bosis tos

Classical Bandits

Numerical example: linear bandits

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Placeical Bandite

Thank you for your attention!

Multi-Armed Bandits: A Novel Generic Optimal Algorithm and Applications to Networking

R. Combes

Bandits: A primer

Applications

Sulle pasic tool

Classical Bandits