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A first example: sequential treatment M%‘E'T‘AGEF;?"
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» There are T patients with the same symptoms
awaiting treatment

» Two treatments exist, one is better than the other

» Based on past successes and failures which
treatment should you use ?
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The model

» At time n, choose action x, € X, observe feedback
¥n(Xn) € Y, and obtain reward r,(x,) € RT.

» "Bandit feedback”: rewards and feedback depend on
actions (often y, = rp)

» Admissible algorithm:
Xn+1 = fn1(X0, 10(X0), Yo(X0), -, Xn, In(Xn), In(Yn))

» Performance metric: regret

T T

A(T) = maxE S (X)) =E D ra(xn)
n=1 n=1

orggle your algorithm

instantaneous
reward

————————— unknown best action

your algorithm

time
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Bandit taxonomy: adversarial vs stochastic M.

A Novel Generic
Optimal Algorithm
and Applications to

Networking

Stochastic Bandit:
» Game against a stochastic environment
» Unknown parameters 6 € ©
» (ra(x))n is i.i.d with expectation 6y
Adversarial Bandit:
» Game against a non-adaptive adversary
» For all x, (ra(x))n arbitrary sequence in X

R. Combes

Bandits: A primer

» At time 0, the adversary “writes down (r,(x))n.x in an
envelope”

\ Engineering problems are mainly stochastic\




Inﬁiependent vs correlated arms
2

A
©
> M1
'u2/\
©
s M1

r

» Independent arms: © = [0, 1]¥
» Correlated arms: © # [0, 1]X: choosing 1 gives
information on 1 and 2

Correlation enables (sometimes much) faster learning.
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Bandit taxonomy: cardinality of the set of

arms
Discrete Bandits:
» X ={1,...K}

» All arms can be sampled infinitely many times

» Regret O(log(T)) (stochastic), O(v/T) (adversarial)
Infinite Bandits:

» X =N, Bayesian setting (otherwise trivial)

» Explore o(T) arms until a good one is found

» Regret: O(V/T).
Continuous Bandits:

» X C RY convex, x — pg(x) has a structure

» Structures: convex, Lipschitz, linear, unimodal
(quasi-convex) etc.

» Similar to derivative-free stochastic optimization
» Regret: O(poly(d)V/T).
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Bandit taxonomy: regret minimization vs best
arm identification

Sample arms and output the best arm with a given
probability, similar to PAC learning

Fixed budget setting:
» T fixed, sample arms xq, ..., x7, and output X7
» Easier problem: estimation + budget allocation
» Goal: minimize P[xT # x*|

Fixed confidence setting:
» ¢ fixed, sample arms xq, ..., x; and output X™

» Harder problem: estimation + budget allocation +
optimal stopping (7 is a stopping time)
» Goal: minimize E[7] s.t. P[X™ # x*] <4
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Example 1: Rate adaptation in wireless Mgandis:
A Novel Generic
networks kL
Networking
» Adapting the modulation/coding scheme to the radio R. Combes
environment '
A~ |:| Applications
oooe R —18
Yes/No
» Rates: rq, 1o, ..., rg
» Success probabilities: 64, 0>, ... , Ok
» Throughputs: pq, g2, ... , pk

Structure: unimodality + 01 > 6> > --- > f.
G

oO—0— 00— 0—0———— 00— 00— =0

6 9 12 18 24 36 48 54 (Mbit/s)

'R. Combes, A. Proutiere, D. Yun, J. Ok, and Y. Yi. "Optimal rate
sampling in 802.11 systems”, IEEE INFOCOM 2014
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Example 2: Shortest path routing Mgandis:

A Novel Generic

» Choose a path minimizing expected delay 2 LA
» Stochastic delays: X;(n) ~ Geometric(6;) Networking

> Path x € {0,1}7, expected delay "2, x;/6. F Gombes

» Hop-by-hop feedback: Xj(n) , for {i: x;(n) =1} R

2S. Talebi, Z. Zou, R. Combes, A. Proutiere, M. Johansson,
"Stochastic Online Shortest Path Routing: The Value of Feedback”,
IEEE Trans. Automatic Control, 2017
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Example 3: Learning to Rank (search
engines)

>
>

Given a query, N relevant items, L display slots 3

A user is shown L items, scrolls down and selects the
first relevant item

One must show the most relevant items in the first
slots.

6, probability of clicking on item n (independence
between items is assumed)

Reward r(¢) if user clicks on the ¢-th item, and 0 if
the user does not click

jaguar I . Connexion

Web  Images  Actalités  Vidéos  Maps  Plus~  Outils de recherche

Environ 171 000 000 résultats (0,31 secondes)

Les cookles assurent e bon fonctonnement de nos senvices. En utlsantces demiers, vous

acce 'utilisation des cookies. J ag uar .

En savoir plus. [ oK o
Constructeur automobile

Jaguar, de son nom off
Jaguar France - Voitures de Sport et Voitures de luxe “Jgagua, Cars Ltd », e
www jaguar.fr/ ~ au our ses
Découvrez les voitures de luxe Jaguar. Alliant héritage et technologie, les berlines et Voitures de luxe et ses modéles sportis.

voitures de sport Jaauar vous feront vivre une exnérience de conduite Wikinédia

3R. Combes, S. Magureanu, A. Proutiere and C. Laroche,
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Multi-Armed

Example 4: Ad-display optimization Bandits

A Novel Generic

Optimal Algorithm

» Users are shown ads relevant to their queries* R
» Announcers x € {1, ..., K}, with uy click-through-rate R. Combes

and budget per unit of time ¢y
» Bandit with budgets: each arm has a budget of plays  Applications
» Displayed announcer is charged per impression/click

car insurance -

Ads related to car insurance ®

GEICO Auto Insurance - GEICO could save you over $500
www.geico.com/ ¥

“R. Combes, C. Jiang and R. Srikant, "Bandits with Budgets:
Regret Lower Bounds and Optimal Algorithms”, SIGMETRICS 2015
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Optimism in the face of uncertainty Mgendie:
Optimal Algorihm
and Applications to

Networkin:
» Replace arm values by upper confidence bounds R Comb:
» “Index” by(n) such that by(n) > 6y with high
probability
» Select the arm with highest index oD D
Xp € argmaxyex bx(n)
» Analysis idea:

T T
E[t(T)] <> Plbes(n) < 01+ > P[xy = X, by(n) > p*].

n=1 n=1

o(log(T)) dominant term

‘ Almost all algorithms in the literature are optimistic (sic!) ‘
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Information theory and statistics

» Distribtions P, Q with densities p and q w.r.t a
measure m
Kullback-Leibler divergence:

D(PIQ) = [ px)log (gg;) m(cx),

Pinsker’s inequality:

D(’?’Q) > TV(P, Q) = /|p x) — q(x)|m(ax).

If P, Q ~ Ber(p), Ber(q):
B p 1-p
D(PIQ) = plog (£) + (1 - pyiog (; =2

v

v

v

» Also (Pinkser + inequality log(x) < x — 1)
2

2(p — 2 ~ D(P||Q) < (p_ q)

(b~ @) < D(PIIQ) < i,

]The KL-divergence is ubiquitous in bandit problems\
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Regret Lower Bounds: general technique

» Decision x, two parameters 6, A, with

x*(X) = x # x*(6).

» Consider consider an algorithm with R™(T) = log(T)

for all parameters (unformly good):

Eo[t(T)] = O(log(T)) , Exltx(T)] = T — O(log(T)).

» Markov inequality:

Po[tx(T) > T/2] + Py[t(T) < T/2] < O(T~'log(T)).

» 1{&x(T) < T/2} is a hypothesis test, risk
O(T~log(T))
» Hence (Neyman-Pearson / Tsybakov):

ZEe[l‘x JIKL(0x, Ax) = log(T) — O(log(log(T)))-

KL divergence of the observations
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Concentration inequalities: Chernoff bounds

>

v

v

v

v

Building indexes requires tight concentration
inequalities

Chernoff bounds: upper bound the MGF

X = (Xy,..., Xpn) independent, with mean g,

Sn =21 X

G such that log(E[e*X—1]) < G(A\), A >0
Generic technique:

P[S, — np > 6] = P[eMS—) > M)
< e ME[eMS )] (Markov)
= exp(nG(A\) — AJ) (independence)

<exp <—n ng{mw — G(A)}) .
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Concentration inequalities: Chernoff and
Hoeffding’s inequality

>

Bounded variables: if X, € [a, b] a.s then
E[e)Xn—1)] < e\*(b-2)%/8 (Hoeffding lemma)
Hoeffding’s inequality:

262

Subgaussian variables: E[e**Xr—#)] < 7*X*/2  similar

Bernoulli variables:

E[ex\(Xn—u)] — Me)\(1—u) _ (1 _ M)e—)\u
Chernoff’s inequality:

P[Sy — nu > 0] < exp(—nKL(p +6/n, 1))

Pinsker’s inequality: Chernoff is stronger than
Hoeffding.
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Concentration inequalities: variable sample
size and peeling

» In bandit problems, the sample size is random and
depends on the samples themselves

> Intervals Nk = {nk, ..., ik}, N = UK N
» ldea: Z, = €5~ is a positive sub-martingale:

P —pn) >8] = > gl
[g’;%(sn pn) = 4] P[%%Z”—e )]

< e VE[Z,,,,] (Doob’s inequality)

= exp(—Ad + N1 G(N))
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< exp (—nk+1 r}@é({)\én;}r1 — G(A)}) .

» Peeling trick (Neveu): union bound over k,
Nk = (1 + a)k.
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The Lai-Robbins bound

» Actions X = {1, ...,
» Rewards 6 = (64, ...,

K}
k) € [0,1]¥

» Uniformly good algorithm: R(T) =

Theorem (Lai ’'85)

For any uniformly good algorithm, and x s.t 6, < 6* we

Eb(T)] 1

have:
lim inf

O(log(T)) , Vo

T—oo log(T) — KL(Ox,0%)

» For x ;é x*, apply the generic technique with:

— (64,....0

X— 170 +6 0X+17"

,0k)
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The Lai-Robbins bound

C¥

Most confusing

/ parameter

_____________ .._______-----.-_-....-.
o
'
n
[ L]
1 2 3 4 5
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Classical bandits: algorithms Meandie:
Optimal Algoritm
and Applications to

» Select the arm with highest index Networking
Xp € arg maxyex bx(n) R. Combes

» UCB algorithm (Hoeffding’s ineqality):

A 2log(n
bx(n) = HX( ) + tx(grE) ) Classical Bandits

empirical mean ———
exploration bonus

» KL-UCB algorithm (using Garivier’s inequality):

by(n) = max{q < 1: t(n)KL(Ax(n), q) < @ 1
likelihood ratio log(confidence level ")

with f(n) = log(n) + 3log(log(n)).
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Classical bandits: regret analysis

Theorem (Auer’02)
Under algorithm UCB, for all x s.t 0 < 6*:

BI(T)] < 7.

Theorem (Garivier'11)

Under algorithm KL-UCB, for all x s.t0x < 68* and for all

0 <0 —0x:

E[t(T)] <

log(T)

KL(0x + ¢, 6%)

8log(T) w2
_ 9*)2 + E

+ Clog(log(T)) + 02
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The model

» A finite set of arms X, a parameter set ©

» An unknown parameter 6 € ©

At time step n, select arm x, observe feedback
Y(n, x) ~ v(6(x)) and receive reward p(x, 6)
Observations (Y (n, x)), are i.i.d. ¥x.

v

v

» Performance metric: regret
.
AT(T,0) = T max u(x, 0) - > E(u(x(1),0)).
t=1
instantaneous

reward

--------- unknown best action

your algorithm

time
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Instances of our model

Classical bandit (Lai, 1985):

v

v

v

v

v

Setof arms X = {1,...,|X|}

Parameter set © = [0, 1]

Reward function: p(x, 6) = 6(x)
Observations: Y(n, x) ~ Ber(6(x))
Model for sequential treatment allocation.
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Instances of our model

Linear bandit (Dani, 2008):

>

>

>

Set of arms X c R finite

Parameter set 6 € © iff 9(x) = (¢, x), Vx

Reward function: u(x, 8) = g(6(x)), g link function
Observations: Y(n, x) ~ N (6(x), 1)

Stochastic version of linear / combinatorial
optimization.

Applications: routing, channel assignment,
recommender systems etc.

Multi-Armed
Bandits:

A Novel Generic
Optimal Algorithm
and Applications to

Networking

R. Combes

Generic Bandits

29/39



Instances of our model

Dueling bandits (Komiyama, 2015):

Setof arms X = {(i,j) € {1,...,d}?}

Parameter set © c [0, 1]9%9 preference matrices

i preferred to j w.p. (i, j) > %, i* Condorcet winner.

>

v

v

v

v

v

v

Reward function: n((i,j), 0)

= 300, i) + (%)) = 1),

Observations: Y(n, x) ~ Ber(6(x))
Model for ranking using pairwise comparisons
Applications: tournaments, learning to rank

0.5
0.3
0.1
0.2

0.7
0.5
0.7
0.9

0.9
0.3
0.5
0.1

0.8
0.1
0.9
0.5
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Instances of our model

Combinatorial semi-bandits (Cesa-Bianchi, 2012):
Set of arms X ¢ {0,1}¢
Parameter set 0 € © iff

>
>

0(x) = (p(1)x(1), ...
Reward function: p(x,6) = S>%_, ¢(i)x(i)

» o(d)x(d)), vx

Observations: Y(n, x) € {0, 1}9 with independent
components and mean 6(x)
» Combinatorial optimization with detailed feedback.
Applications: routing w. link feedback, channel

assignment, etc.

Destination
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Regret lower bound

Consider = a uniformly good algorithm. For any 6 € ©, we

have: r——
lim inf M
T IN T

where C(0) is the value of the optimization problem:

> C(0),

minimize X (0) — (.0
W(X)ZO,XGXXGXU( )(1*(8) — u(x, 0))

subject to >~ n(x)D(0, X, x) > 1, VA € A(6),
XEX

where

AB) = {\ € ©: D(8, A, x*(8)) = 0, x*(0) # x*(\)}.

(1)
(2)
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The OSSB algorithm Myt

A Novel Generic

s(0) < 0, N(x 1),m(x,1)«<0,Vxe X {Initialization} Optimal Algorithm
fort=1,...,Tdo and Applications to
Networking
R. Combes
if N(x,t) > c(x,m(t))(1 +~)In t,Vx then
s(t) + s(t—1)
x(8) < x*(m(t)) {Exploitation}
else

s(t) < s(t—1) +1
X(t) + argminye x —

o(x,m(D) -
X(t) + argminyecx N(x,t) Generic Bandits
if N(X(1),t) <es(t) then
x(t) + X(1) {Estimation}
else .
x(1) « X(1) {Exploration}
end if I —
end if

{Update statistics}

Select arm x(t) and observe Y(x(t),t)
m(x,t+1) < m(x,t), Vx # x(t),
N(x,t+1) < N(x,t), Vx # x(t)

mx(t), t + 1)  YEOLEACELONCO.0

N(x(t),t+ 1) « N(x(t),t) +1
end for
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OSSB is asymptotically optimal A“N”“B';"T’ZGE?;?".
Optimal Algorithm

. . and Applications to
We use the following natural assumptions. Networking
A1 Observations are either Bernoulli or Gaussian b CEIileEE

A2 Forall x, (0, \) — D(x, 6, \) is continuous at all
points where it is not infinite

A3 For all x, the mapping 0 — u(x, ) is continuous
A4 The solution to problem (1)-(2) is unique

Generic Bandits

Theorem
Under A1-Ad, the regret of 1 =OSSB(e,~) with ¢ < 137
verifies:
lim sup A™(T)
T—o0 In T
with F(e,~v,0) — 1 ase — 0 and~y — 0 for all 6.

< C(0)F(e,,9),
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OSSB: elements of analysis

Element 1: show that in the exploitation phase, the
optimal arm is selected with high probability.

Under A1, there exists a function G such that for all t > 1:

d>p (Z N(x, t)D(m(t),6,x) > (1 +~)In t) < G(v, |X|).

t>1 XeX

Proof: Chernoff bound + Doob’s maximal inequality +
multi-dimensional peeling.
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OSSB: elements of analysis

Element 2: show that, when 8 is well estimated, so is
c(0).

Lemma

Under A1-A4, the optimal value 6 — C(0) and the
solution 6 — c(0) = (c(x, 0))xex are continuous at 6.

Proof: similar to Berge’s theorem with an additional
difficulty as the feasible set is not compact.
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OSSB: elements of analysis
Element 3: show that the number of exploration /
estimation rounds where 6 is not well estimated is finite in
expectation. Idea: after s such rounds, N(x, t) > es by
construction.

Lemma

Let x € X and e > 0. Define F; the o-algebra generated
by (Y(x(s),S))1<s<t- LetS C N be a (random) set of
rounds. Assume that there exists a sequence of (random)
sets (S(8))s>1 such that (i) S C Us>1S(s), (i) for all s > 1
and allt € §(s), N(x,t) > es, (iii) |S(s)| < 1, and (iv) the
event t € S(s) is Fi-measurable. Then for all 5 > 0:

> P(teS,|m(x,t) - 0(x)| > ) < lz
= €0

Proof: Chernoff bound + Doob’s optional stopping
theorem.
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Numerical example: linear bandits

Average Regret
1000 2000 3000 4000 5000

0

Thompson Sampling (Agrawal et

GLM-UCB (Filippi et al.)

0ssB

Lattimore et al. /-

T
0e+00

T
2e+04

T
4e+04

Time

T
6e+04

T
8e+04

T
1e+05
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Thank you for your attention !
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