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0T Setting



INTERNET OF THINGS

The

INTERNET
ITHINGS o

loT: sensors and actuators connected by networks to
computing systems.
- Gartner predicts 20.8 billion loT devices by 2020.
- IDC projects 32 billion loT devices by 2020
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Applications ol Analytics

0%80 IOT ANALYTICS Q3 /2016 Insights that empower you to understand loT markets

loT Segment Global share of loT projects! Details

Americas Europe APAC Trend?

@@_ Connected Industry 22% - 20% A
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@ E Smart Retail - 4% N = 640 global, publicly

————————————————————————————————————————————————— announced loT projects

. '...‘.‘) Smart Supply Chain - 4% M Americas Europe B ArPAC MEA N/A

1. Based on 640+ publicly known enterprise loT projects.(Not including consumer loT projects e.g., Wearables, Smart Home) 2. Trend based on loT Analytics’s Q2/2016 loT Employment Statistics Tracker 3. Not including
Consumer Smart Home Solutions Source: loT Analytics 2016 Global overview of 640 enterprise loT use cases (August 2016)
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- Interoperabillity: loT

- Information transparency: virtual copy of the physical
world

- Technical assistance: support human decisions

- Decentralized decisions: make decisions on their own



INTERNET OF THINGS

loT Embedded Systems as % of the DU
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0] versus Big Data

GoogleTrends Comparer

® Internet des objets g Big data : :
L . + Ajouter une comparaison
Domaine d'étude Sujet
Dans tous les pays ¥ Cinq derniéres années ¥ Toutes les catégories ¥ Recherche surle Web ¥

Evolution de l'intérét pour cette recherche @
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Moyennes 26 févr. 20... 17 nov. 2013 9 aolt 2015
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Data Set

Classitier Algorithm
builds Model

Analytic Standard Approach

Finite training sets

Static models
12



Data Stream Approach

Infinite training sets

Dynamic models
13
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Pain Points

e Need to retrain!
* Things change over time
e How often?

e Data unused until next
update!

e Value of data wasted

AUC
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0T Stream Mining

Maintain models online
* Incorporate data on the fly
* Unbounded training sets

e Resource efficient

Detect changes and adapts

* Dynamic models
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Approximation Algorithms

* (General idea, good for streaming algorithms
* Small error € with high probability 1-6
» True hypothesis H, and learned hypothesis H

e Pr| \H—I:I\<8|H\]> 1-0
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Approximation Algorithms

 What is the largest number that we can store in 8

bits”?
tfofrjo]tjofi]o
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Approximation Algorithms

Programming S.L. Graham, R.L. Rivest
Techniques Editors

Counting Large
Numbers of Events in
e What is the Small Registers

Robert Morris
arg est num ber Bell Laboratories, Murray Hill, N.J.
that we can store
. N 8 b |J[S? It is possible to use a small counter to keep

approximate counts of large numbers. The resulting
expected error can be rather precisely controlled. An
example is given in which 8-bit counters (bytes) are
used to keep track of as many as 130,000 events with a
relative error which is substantially independent of the
number n of events. This relative error can be expected
to be 24 percent or less 95 percent of the time (i.e. 0 =
n/8). The techniques could be used to advantage in
multichannel counting hardware or software used for
the monitoring of experiments or processes.



Approximation Algorithms

f(x) =log(1+ x)/log(2)
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Approximation Algorithms

f(x) =log(1 + x/30)/log(1 + 1/30)
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* What Is the /
argest number or / -
that we can store 4l )

in 8 bits”
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Approximation Algorithms

f(x) =log(1 + x/30)/log(1 + 1/30)

100
80 |-
* What is the 50
argest number w0l
that we can store
in 8 bits? 00
0 \

\ \ '
0 20 40 60 80 100
X

f(0) = 0,f(1) = 1
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Approximation Algorithms

MORRIS APPROXIMATE COUNTING ALGORITHM

1 Init counter c + 0
2 for every event in the stream

3 do rand = random number between 0 and 1
4 if rand < p
5 then c — ¢+ 1

 What Is the largest number that we can
store in 8 bits?
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Approximation Algorithms

101100011110101 0111010

Sliding Window
We can maintain simple statistics over sliding windows, using
O(1log® N) space, where

» N is the length of the sliding window
» ¢ IS the accuracy parameter

T

M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. 2002
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WHAI IS MOA!



MOA

{M}assive {O}nline {A}nalysis Is a framework for online learning
from data streams.

[t 1s closely related to WEKA

't Includes a collection of offline and online as well as tools for
evaluation:

» classification, regression

* clustering, frequent pattern mining

Fasy to extend, design and run experiments



WEKA: the biro




MOA: the bird

The Moa (another native NZ
bird) is not only tlightless, like
the Weka, but also extinct.
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MOA: the bird

The Moa (another native NZ
bird) is not only tlightless, like
the Weka, but also extinct.
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MOA: the bird

The Moa (another native NZ
bird) is not only tlightless, like
the Weka, but also extinct.
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STREAM SET TING

Process an example at a time,and
inspect 1t only once (at most)

Use a limited amount of memory

Work In a limited amount of
time

Be ready to predict at any point

examples

1111111111111111

requirement 4

examples

predictions



STREAM EVALUATION

examples

« Holdout Evaluation v
D inpu Q leaming
e |nterleaved lest- | hen-1rain or \ : /
Prequential .

examples



STREAM EVALUATION

Holdout an independent
test set

 Apply the current decision model

to the test set, at regular time
intervals

* [he loss estimated In the holdout

IS an unbilased estimator

examples

1111111111111111

requirement 4

examples

predictions



STREAM EVALUATION

Prequential Evaluation

* The error of a model Is computed

~ ‘kl /-\
from the sequence of examples. |
D 2
* For each example In the stream, the \ /
- D,
actual model makes a prediction based .
only on the example attribute-values. 4

1=1



MOA Stream Clustering Visualization Frame
Ctusl:eringw

L

' _Setupj Visualization [

Resume | Screenshot Points Ground Eruth Visualisation Speed  processed: 205000
Microclustering Clustering ]

Evaluation
Yalues Plot

Measure Current
Fi 0,27 0,45

Precision 0,84 0,72
Recal 0,35 0,62
55Q 0,00 0,06

[ Zoom in ¥ ][ Zoom out ¥ ]Spbtfrounlcerneln->nunl<ernels=3 [ Zoom in ¥ ][ Zoom out X ]
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COMMAND LINE

e java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar
moa.DoTask "EvaluatePeriodicHeldOutTest -1
DecisionStump -s generators.waveformGenerator -n
100000 -1 100000000 -f 1000000" > dsresult.csv

 This command creates a comma separated values file:

» training the DecisionStump classifier on the WaveformGenerator data,
» using the first 100 thousand examples for testing,

- training on a total of 100 million examples,

- and testing every one million examples



Classification



o \ < © o
Definition x o °
X .

Given a set of training T x © o
examples belonging to nc x
different classes, a classifier R —
algorithm builds a model
that predicts for every Examples
unlabeled instance x the * Email spam filter

class C to which it belongs e Twitter sentiment analyzer

37 Photo: Stephen Merity http:



http://smerity.com

Nalve Bayes

Based on Bayes’
theorem

Probabi

observi
given C

ity of
Ng feature X

ass C

Prior class probability

P(C)

Just counting!

38

z|C)P(C)
P(x)

P(C|x) = il

likelihood % prior

posterior = :
evidence

P(Clzr) x H P(xz;|CP(C)

XT;EXx

C' = argmax P(C|x)
C



Perceptron

L inear classifier

Data stream: <Xi,yi

—_

yi = ha(x) = o(wi' X))

o(x) = 1/(1+e*) o'=0(x)(1-0(x))

Minimize MSE J(W)="25(yi-i)?

SGD Wit = W - nVJ Xi

o VJ =-(yi-7)¥i(1-%1)

* Wit = Wi + N(Yi-¥i)

y

—_

(1-i)Xi

39

Attribute 1 — Wy

Attribute 2 — We

Attribute 3 — W3

Attribute 4 — Wy

Attribute 5 — Ws

—— Output hy(X;)



Decision lree

Each node tests a features

Each branch represents a value
Each leaf assigns a class

Greedy recursive induction

* Sort all examples through tree

e Xi = most discriminative attribute

* New node for xj, new branch for each
value, leaf assigns majority class

Stop if no error | limit on #instances

40

Car deal?

Road
Tested?

Yes No

TR

X
Mileage?



P Domingos and G. Hulten, “Mining High-5peed Data Streams,”

KDD "00

HOEFFDING TREE

Sample of stream enough for near optimal decision
Estimate merit of alternatives from prefix of stream
Choose sample size based on statistical principles
When to expand a leaf!

« Let X, be the most informative attribute,
X, the second most informative one

» Hoeftding bound: split it G(X;) - G(xy) > € = \/

R?1In(1/9)

2n



Regression



Definition

Given a set of training
examples with a numeric
abel, a regression algorithm
ouilds a model that predicts
for every unlabeled instance x
the value with high accuracy

y=75(X)

43

Examples
e Stock price
* Airplane delay

Photo: Stephen Merity http://smerity.com
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Perceptron

Linear regressor

Data stream: {Xi,yi)

¥i = ha(X) = WTX;

Minimize MSE J(w)="25 (yi-¥)2

SGD W' = w - nVJ X

o VJ =-(yi-¥)

44

Attribute 1 — Wy

Attribute 2 — We

Attribute 3 — W3

Attribute 4 — Wy

Attribute 5 — Ws

—— Output hy(X;)



Regression Iree

e Same structure as decision tree

* Predict = average target value or
inear model at leaf (vs majority)

* Gain = reduction in standard deviation (vs entropy)

o=/ @ —yi)2 /(N — 1)

45



Rules

* Problem: very large decision trees Conditions
nave context that is complex and ( .
nard to understand X > a)

* Rules: self-contained, modular, easier (X k )
to interpret, no need to cover universe
* L keeps sufficient statistics to: (X | — C)

* make predictions

* expand the rule

* detect changes and anomalies Conseguence

46



Adaptive Model Rules

E. Almeida, C. Ferreira, J. Gama. "Adaptive Model Rules from Data Streams." ECML-PKDD ‘13

Rule 1
Ruleset: ensemble of rules
(Xz )
Rule prediction: mean, linear model (Xl > 2)

Ruleset prediction

* Weighted avg. of predictions of rules
covering instance X

(X4 > 1) @(2 > D (Xg > @
[Xg < 5)..

* Weights inversely proportional to error Eg:x=[4,-1,1,2]
 Default rule covers uncovered ?
X v
instances (%) Z Y1

47
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Concept Drift



Definition

Given an input sequence

(X1,X2,...,Xty, output at instant

t an alarm signal if there is a

distribution change, and a

prediction X1 minimizing Outputs

the error |Xu1 — Xt+1| * Alarm indicating change
* Estimate of parameter

49 Photo: http://www.logsearch.io
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Application

« Change detection on
evaluation of model

e Jraining error should decrease
with more examples

« Change in distribution of
training error

e [nput = stream of real/binary
numbers

e Trade-off between detecting
true changes and avoiding
false alarms

50
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Cumulative Sum

Alarm when mean of input data differs from zero
Memoryless heuristic (no statistical guarantee)
Parameters: threshold h, drift speed v

go=0, gt=max(0, g1 + &t - V)

if gt > hthenalarm; gi=0

51



Statistical Process Control

J Gama, P. Medas, G. Castillo, P. Rodrigues: “Learning with Drift Detection”. SBIA '04

* Monitor error in sliding window

* Null hypothesis: " v oncen
no change between windows rdrift

* |f error > warning level
learn in parallel new model
on the current window Pt S !

0 Number of examples processed (time) 5000

Error rate

new window

>

e if error > drift level
substitute new model for old

52



Concept-adapting VFEDT

G. Hulten, L. Spencer, P. Domingos: “Mining Time-Changing Data Streams”. KDD ‘01

 Model consistent with sliding window on stream
* Keep sufficient statistics also at internal nodes
* Recheck periodically if splits pass Hoeftding test

e |f test fails, grow alternate subtree and swap-in
when accuracy of alternate is better

e Processing updates O(1) time, +O(W) memory

* |ncrease counters for incoming instance,
decrease counters for instance going out window

53



A. Bifet, R. Gavalda: “Adaptive Parameter-free Learning from Evolving Data Streams” IDA (2009)

Hoeffding Adaptive Iree

* Replace frequency counters by estimators
* No need for window of instances
e Sufficient statistics kept by estimators separately

* Parameter-free change detector + estimator with
theoretical guarantees tor subtree swap (ADWIN)

* Keeps sliding window consistent with
‘no-change hypothesis”

A. Bifet, R. Gavalda: “Learning from Time-Changing Data with Adaptive Windowing”. SDM ‘07
o4



ADWIN

ADWIN

An adaptive sliding window whose size is recomputed online
according to the rate of change observed.

Problem

Given an input sequence zi,2y,...,Zt,... we want to output

@ a prediction Z;,; minimizing prediction error:

|5t+1— 93t+1|

@ an alert if change is detected




ADWIN

Optimal Change Detector and Predictor
@ High accuracy

@ Fast detection of change
@ Low false positives and false negatives ratios

@ Low computational cost: minimum space and time needed

ADWIN
@ Theoretical guarantees

@ No parameters needed




ADWIN

Theorem

At every time step we have:

@ (False positive rate bound). If u; remains constant
wrthin W, the probability that ADWIN shrinks the
wrindow at this step 1s at most ¢.

© (False negative rate bound). Suppose that for some
partition of W wn two parts Wy Wi (where Wi contains
the most recent items) we have |pw, — pw;| > 26.. Then
with probability 1 — 9 ADWIN shrinks W to Wi, or
shorter.

ADWIN tunes itself to the data stream at hand, with no need for
the user to hardwire or precompute parameters.




ADWIN

@ (Classification

o Adaptive Naive Bayes (Bifet et al. 2007)

Decision Trees: Hoeffding Adaptive Trees (Bifet et al. 2009)
ADWIN Bagging (Bifet et al. 2009)

Leveraging Bagging (Bifet et al. 2010)

Stacking of Restricted Hoeffding Trees (Bifet et al. 2012)
Multilabel Classification (Read et al. 2012)

Adaptive kNN (Bifet et al. 2013)

e Random Forests (Marron et al. 2014)

@ Frequent Pattern Mining

e Frequent Closed Tree Mining (Bifet et al. 2008)
o Frequent Closed Graph Mining (Bifet et al. 2011)

58



Adaptive Random Forest

 Why Random Forests?
e Off-the-shelf learner
* Good learning performance Related publication

Adaptive random forests for evolving data stream
classification.

Gomes, H M; Bifet, A; Read, J; Barddal, Jd P; Enembreck, F;
Ptharinger, B; Holmes, G; Abdessalem, T.

Machine Learning, Springer, 2017.

* Based on the original Random Forest by Breiman

59



Adaptive Random Forest

1. Simulates resampling through leveraging bagging

2.

3.

Randomly select subsets of features for splits
Uses Hoeftding Trees as the base learner

1 drift and 1 warning detector per tree

Train trees in the background before adding them

Trees are completely independent (can train in
parallel)

60



SAM-KNN

KNN Classifier with Self
Adjusting Memory for
Heterogeneous Concept Drift.

Viktor Losing, Barbara
Hammer, Heiko Wersing:

Best Paper Award
ICDM 2016: 291-300

61
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Micro-Clusters

Tian Zhang, Raghu Ramakrishnan, Miron Livny: “BIRCH: An Efficient Data Clustering Method for Very Large Databases”. SIGMOD '96

 AKA, Cluster Features CF
Statistical summary structure

e Maintained in online phase, ftj‘ﬂ
input for offline phase S0y
f'.— -l'__ ( ‘,:_jl
'-:-'{r-i-.-tf"/'f*
« Data stream (X, d dimensions o
0
7oy
» Cluster feature vector -:tj_f‘-.;':;i':;_ri;,
N:  number of points Sl
LS;:  sum of values (for dim. j) |
SS;:  sum of squared values (for dim. j) Properties:
o Centroid = LS/N
» Easy to update, easy to merge o Radius = /S5/N — (LS/N)2
. Constant space irrespective to the o Diameter = \/ 2x’)’v*f(5,\j_2f)“2

number of examples!
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MOA Algorithms

Editing option: Stream

Multi-label/ Multi-target
Outlier Detection
Concept Drift Detection
Active Learning
Frequent ltemset Mining
Frequent Graph Mining

Recommendation Systems

63

class moa.streams. clustering, RandomR EFGeneratorEvents

Purpose
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What's next”



http://huawei-noah.github.io/streamDM-Cpp/

streamDM C++

——— ‘ oot | [P e

streamDM in C++ x Xy o A RO
i-noah.github.io/streamDM-Cpp/

€ = C [} huawei-noa




Vision

Streaming Distributed

0T Big Data Stream Mining

606



http://samoa-project.net

APACHE SAMOA

G. De Francisci Morales, A. Bifet: “SAMOA: Scalable Advanced Massive Online Analysis”. JMLR (2014)

Data
Mining

Stream Stream

Non

Distributed Distributed

Storm, S4,
Samza

67



SAMOA ARCHITECTURE
S

] e

Classifier

Methods




Vertical Partitioning

N. Kourtellis, G. De Francisci Morales, A. Bifet, A. Murdopo: “VHT: Vertical Hoeffding Tree”, 2016 Big Data Conference 2016

Model Stats

Attributes
Stream —» /? ?\ e » Stats
A Stats
Single attribute ................................................... }L
tracked in Splits
single node

69



Kappa Architecture

&3 kafka
prOducer \ / consumer

producer — —> consumer

/N

producer consumer

* Apache Kafka is a fast, scalable, durable, and
fault-tolerant publish-subscribe messaging system.

70



SUPPORTING
ORGANISATIONS
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http://huawei-noah/github.io/streamDM

StreamDM

streamDM: Data Mining
_for Spark Streaming

/2


http://huawei-noah/github.io/streamDM

summary

e |oT Streaming useful for finding approximate solutions with
reasonable amount of time & limited resources

« MOA: Massive Online Analytics
« Available and open-source
e http://moa.cms.waikato.ac.nz/
« SAMOA: A Platform for Mining Big Data Streams
e Available and open-source (incubating @ASF)

e http://samoa.incubator.apache.org

/3


http://samoa.incubator.apache.org

Open Challenges

Times Series + Stream Mining
Structured output

Millions of classes

Ease of use

Applications: Predictive Maintenance, Al for loT
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Thanks!

W @abifet



