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IoT Setting
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INTERNET OF  THINGS

IoT: sensors and actuators connected by networks to 
computing systems.

•  Gartner predicts 20.8 billion IoT devices by 2020.
•  IDC projects 32 billion IoT devices by 2020



IoT Applications For 
Energy Management

4



IoT Applications For  
Connected/Smart Home
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IoT Applications For Smart 
Cities
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IoT Applications  
For Industrial Automation  
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Applications IoT Analytics

8



IOT AND INDUSTRY 4.0

Interoperability: IoT
Information transparency: virtual copy of the physical 
world
Technical assistance: support human decisions
Decentralized decisions: make decisions on their own



INTERNET OF  THINGS

• EMC Digital Universe, 2014 

digital universe

Figure 3: EMC Digital Universe, 2014
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IoT versus Big Data
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Analytic Standard Approach
Finite training sets  

Static models
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Data Stream Approach
Infinite training sets  

Dynamic models
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Importance$of$Online$Learning$$

•  As$spam$trends$change,$it$is$important$to$
retrain$the$model$with$newly$judged$data$

•  Previously$tested$using$news$
comment$in$Y!Inc$

•  Over$29$days$period,$you$
can$see$degrada)on$in$
performance$of$base$model$
(w/o$ac)ve$learning)$VS$
Online$model$(AUC$stands$
for$Area$Under$Curve)$

•  Original$paper$
$

Pain Points

• Need to retrain! 

• Things change over time

• How often? 

• Data unused until next 
update! 

• Value of data wasted
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IoT Stream Mining

• Maintain models online 

• Incorporate data on the fly 

• Unbounded training sets 

• Resource efficient 

• Detect changes and adapts 

• Dynamic models
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Approximation Algorithms

• General idea, good for streaming algorithms 

• Small error ε with high probability 1-δ 

• True hypothesis H, and learned hypothesis Ĥ 

• Pr[ |H - Ĥ| < ε|H| ] > 1-δ
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Approximation Algorithms

• What is the largest number that we can store in 8 
bits? 
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Approximation Algorithms

• What is the 
largest number 
that we can store 
in 8 bits? 
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Approximation Algorithms

• What is the 
largest number 
that we can store 
in 8 bits? 
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Approximation Algorithms

• What is the 
largest number 
that we can store 
in 8 bits? 
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Approximation Algorithms

• What is the 
largest number 
that we can store 
in 8 bits? 
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Approximation Algorithms

• What is the largest number that we can 
store in 8 bits? 
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Approximation Algorithms
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WHAT IS MOA?



MOA

• {M}assive {O}nline {A}nalysis is a framework for online learning 
from data streams. 

• It is closely related to WEKA

• It includes a collection of offline and online as well as tools for 
evaluation:

• classification, regression 

• clustering, frequent pattern mining 

• Easy to extend, design and run experiments 

{M}assive {O}nline {A}nalysis
MOA (Bifet et al. 2010)

{M}assive {O}nline {A}nalysis is a framework for online
learning from data streams.

It is closely related to WEKA
It includes a collection of offline and online as well as
tools for evaluation:

classification, regression
clustering
frequent pattern mining

Easy to extend
Easy to design and run experiments



WEKA: the bird
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MOA: the bird

The Moa (another native NZ 
bird) is not only flightless, like 
the Weka, but also extinct.
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MOA: the bird

The Moa (another native NZ 
bird) is not only flightless, like 
the Weka, but also extinct.
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MOA: the bird

The Moa (another native NZ 
bird) is not only flightless, like 
the Weka, but also extinct.

29



STREAM SETTING
• Process an example at a time,and 

inspect it only once (at most)

• Use a limited amount of  memory

• Work in a limited amount of  
time

• Be ready to predict at any point



STREAM EVALUATION

• Holdout Evaluation

• Interleaved Test-Then-Train or 
Prequential



STREAM EVALUATION
Holdout an independent 

test set 

• Apply the current decision model 
to the test set, at regular time 
intervals

• The loss estimated in the holdout 
is an unbiased estimator



STREAM EVALUATION
Prequential Evaluation 

• The error of a model is computed 
from the sequence of examples. 

• For each example in the stream, the 
actual model makes a prediction based 
only on the example attribute-values.



GUI



COMMAND LINE
• java -cp .:moa.jar:weka.jar -javaagent:sizeofag.jar 
moa.DoTask "EvaluatePeriodicHeldOutTest -l 
DecisionStump -s generators.WaveformGenerator -n 
100000 -i 100000000 -f 1000000" > dsresult.csv 

• This command creates a comma separated values file:

• training the DecisionStump classifier on the WaveformGenerator data,

• using the first 100 thousand examples for testing,

• training on a total of 100 million examples, 

• and testing every one million examples



Classification
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Definition
Given a set of training 
examples belonging to nC 
different classes, a classifier 
algorithm builds a model 
that predicts for every 
unlabeled instance x the 
class C to which it belongs
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Examples 
• Email spam filter 
• Twitter sentiment analyzer

Photo: Stephen Merity http://smerity.com

http://smerity.com


• Based on Bayes’ 
theorem 

• Probability of 
observing feature xi 
given class C 

• Prior class probability 
P(C) 

• Just counting!

Naïve Bayes
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posterior =

likelihood⇥ prior

evidence

P (C|x) = P (x|C)P (C)

P (x)

P (C|x) /
Y

xi2x

P (x
i

|C)P (C)

C = argmax

C
P (C|x)



Perceptron

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Output h~w (~xi)

w1

w2

w3

w4

w5

I Data stream: h~xi , yii
I Classical perceptron: h~w (~xi) = ~wT~xi ,
I Minimize Mean-square error: J(~w) = 1

2
P

(yi � h~w (~xi))
2

Perceptron
• Linear classifier 

• Data stream: ⟨x⃗i,yi⟩ 

• ỹi = hw⃗(x⃗i) = σ(w⃗iT x⃗i) 

• σ(x) = 1/(1+e-x)  σʹ=σ(x)(1-σ(x)) 

• Minimize MSE J(w⃗)=½∑(yi-ỹi)2 

• SGD w⃗i+1 = w⃗i - η∇J x⃗i 

• ∇J = -(yi-ỹi)ỹi(1-ỹi) 

• w⃗i+1 = w⃗i + η(yi-ỹi)ỹi(1-ỹi)x⃗i
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Decision Tree
• Each node tests a features 

• Each branch represents a value 

• Each leaf assigns a class 

• Greedy recursive induction 

• Sort all examples through tree 

• xi = most discriminative attribute 

• New node for xi, new branch for each 
value, leaf assigns majority class 

• Stop if no error | limit on #instances
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HOEFFDING TREE
• Sample of stream enough for near optimal decision

• Estimate merit of alternatives from prefix of stream

• Choose sample size based on statistical principles

• When to expand a leaf?

• Let x1 be the most informative attribute, 
x2 the second most informative one

• Hoeffding bound: split if G(x1) - G(x2) > ε 

P. Domingos and G. Hulten,  “Mining High-Speed Data Streams,” KDD ’00

=

r
R2 ln(1/�)

2n



Regression
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Definition
Given a set of training 
examples with a numeric 
label, a regression algorithm 
builds a model that predicts 
for every unlabeled instance x 
the value with high accuracy 

y=ƒ(x)
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Examples 
• Stock price 
• Airplane delay

Photo: Stephen Merity http://smerity.com

http://smerity.com


Perceptron

Attribute 1

Attribute 2

Attribute 3

Attribute 4

Attribute 5

Output h~w (~xi)

w1

w2

w3

w4

w5

I Data stream: h~xi , yii
I Classical perceptron: h~w (~xi) = ~wT~xi ,
I Minimize Mean-square error: J(~w) = 1

2
P

(yi � h~w (~xi))
2

Perceptron
• Linear regressor 

• Data stream: ⟨x⃗i,yi⟩ 

• ỹi = hw⃗(x⃗i) = w⃗T x⃗i 

• Minimize MSE J(w⃗)=½∑(yi-ỹi)2 

• SGD w⃗' = w⃗ - η∇J x⃗i 

• ∇J = -(yi-ỹi) 

• w⃗' = w⃗ + η(yi-ỹi)x⃗i
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Regression Tree

• Same structure as decision tree 

• Predict = average target value or  
linear model at leaf (vs majority) 

• Gain = reduction in standard deviation (vs entropy) 

45

� =
qX

(ỹi � yi)2/(N � 1)



Ensembles of Adaptive Model Rules from High-Speed Data Streams

AMRules

Rules

Rules

����������

�����	
����

A rule is a set of conditions based on
attribute values.
If all the conditions are true, a prediction is
made based on L.
L contains the sufficient statistics to:

expand a rule,
make predictions,
detect changes,
detect anomalies.

6 / 33

Rules
• Problem: very large decision trees 

have context that is complex and 
hard to understand 

• Rules: self-contained, modular, easier 
to interpret, no need to cover universe 

• 𝓛 keeps sufficient statistics to: 

• make predictions 

• expand the rule 

• detect changes and anomalies
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Ensembles of Adaptive Model Rules from High-Speed Data Streams

AMRules

Rule sets

Predicting with a rule set

�
�
�
�
�
�
�

����	
 ����	� ����	�









E.g: x = [4,�1, 1, 2]

f̂ (x) =
X

Rl2S(xi )

✓l ŷl ,

Prediction consists of a weighted
average of the predictions made
by the rules that cover x.
Weights are inversely
proportional to the MAE of the
prediction functions.
The uncertainty of a prediction is
the weighted average of the
errors.

✓l =
(el + ")�1

X

Rj2S(xi )

(ej + ")�1

12 / 33

Adaptive Model Rules
• Ruleset: ensemble of rules 

• Rule prediction: mean, linear model 

• Ruleset prediction 

• Weighted avg. of predictions of rules 
covering instance x 

• Weights inversely proportional to error 

• Default rule covers uncovered 
instances

47

E. Almeida, C. Ferreira, J. Gama. "Adaptive Model Rules from Data Streams." ECML-PKDD ‘13



Concept Drift
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Definition
Given an input sequence 
⟨x1,x2,…,xt⟩, output at instant 
t an alarm signal if there is a 
distribution change, and a 
prediction x̂t+1 minimizing 
the error |x̂t+1 − xt+1|

49

Outputs 
• Alarm indicating change 
• Estimate of parameter

Photo: http://www.logsearch.io

http://www.logsearch.io


orous guarantees of performance (a theorem). We show that
these guarantees can be transferred to decision tree learners
as follows: if a change is followed by a long enough stable
period, the classification error of the learner will tend, and
the same rate, to the error rate of VFDT.

We test on Section 6 our methods with synthetic
datasets, using the SEA concepts, introduced in [22] and a
rotating hyperplane as described in [13], and two sets from
the UCI repository, Adult and Poker-Hand. We compare our
methods among themselves but also with CVFDT, another
concept-adapting variant of VFDT proposed by Domingos,
Spencer, and Hulten [13]. A one-line conclusion of our ex-
periments would be that, because of its self-adapting prop-
erty, we can present datasets where our algorithm performs
much better than CVFDT and we never do much worse.
Some comparison of time and memory usage of our meth-
ods and CVFDT is included.

2 A Methodology for Adaptive Stream Mining
The starting point of our work is the following observation:
In the data stream mining literature, most algorithms incor-
porate one or more of the following ingredients: windows to
remember recent examples; methods for detecting distribu-
tion change in the input; and methods for keeping updated
estimations for some statistics of the input. We see them as
the basis for solving the three central problems of

• what to remember or forget,

• when to do the model upgrade, and

• how to do the model upgrade.

Our claim is that by basing mining algorithms on well-
designed, well-encapsulated modules for these tasks, one
can often get more generic and more efficient solutions
than by using ad-hoc techniques as required. Similarly, we
will argue that our methods for inducing decision trees are
simpler to describe, adapt better to the data, perform better or
much better, and use less memory than the ad-hoc designed
CVFDT algorithm, even though they are all derived from the
same VFDT mining algorithm.

A similar approach was taken, for example, in [4] to give
simple adaptive closed-tree mining adaptive algorithms. Us-
ing a general methodology to identify closed patterns based
in Galois Lattice Theory, three closed tree mining algo-
rithms were developed: an incremental one INCTREENAT,
a sliding-window based one, WINTREENAT, and finally one
that mines closed trees adaptively from data streams, ADA-
TREENAT.

2.1 Time Change Detectors and Predictors To choose a
change detector or an estimator, we will review briefly all the
different types of change detectors and estimators, in order to

-
xt

Estimator
- -

Alarm
Change
Detector

-
Estimation

Memory
-

6

6
?

Figure 1: Change Detector and Estimator System

justify the election of one of them for our algorithms. Most
approaches for predicting and detecting change in streams of
data can be discussed as systems consisting of three modules:
a Memory module, an Estimator Module, and a Change
Detector or Alarm Generator module. These three modules
interact as shown in Figure 1, which is analogous to Figure
8 in [21].

In general, the input to this algorithm is a sequence
x1, x2, . . . , xt, . . . of data items whose distribution varies
over time in an unknown way. The outputs of the algorithm
are, at each time step

• an estimation of some important parameters of the input
distribution, and

• a signal alarm indicating that distribution change has
recently occurred.

We consider a specific, but very frequent case, of this
setting: that in which all the xt are real values. The desired
estimation in the sequence of xi is usually the expected value
of the current xt, and less often another distribution statistics
such as the variance. The only assumption on the distribution
is that each xt is drawn independently from each other. Note
therefore that we deal with one-dimensional items. While the
data streams often consist of structured items, most mining
algorithms are not interested in the items themselves, but on
a bunch of real-valued (sufficient) statistics derived from the
items; we thus imagine our input data stream as decomposed
into possibly many concurrent data streams of real values,
which will be combined by the mining algorithm somehow.

Memory is the component where the algorithm stores
the sample data or summary that considers relevant at current
time, that is, its description of the current data distribution.

The Estimator component is an algorithm that estimates
the desired statistics on the input data, which may change
over time. The algorithm may or may not use the data
contained in the Memory. The simplest Estimator algorithm
for the expected is the linear estimator, which simply returns

Application
• Change detection on 

evaluation of model 

• Training error should decrease 
with more examples 

• Change in distribution of 
training error 

• Input = stream of real/binary 
numbers 

• Trade-off between detecting 
true changes and avoiding 
false alarms
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Cumulative Sum
• Alarm when mean of input data differs from zero 

• Memoryless heuristic (no statistical guarantee) 

• Parameters: threshold h, drift speed v 

• g0 = 0, gt = max(0, gt-1 + εt - v) 

• if gt > h then alarm; gt = 0
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Concept Drift

Number of examples processed (time)
E
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Drift level

Warning level

0 5000
0

0.8

new window

Statistical Drift Detection Method
(Joao Gama et al. 2004)

Statistical Process Control

• Monitor error in sliding window 

• Null hypothesis: 
no change between windows 

• If error > warning level  
learn in parallel new model  
on the current window 

• if error > drift level  
substitute new model for old
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J Gama, P. Medas, G. Castillo, P. Rodrigues: “Learning with Drift Detection”. SBIA '04



Concept-adapting VFDT
• Model consistent with sliding window on stream 

• Keep sufficient statistics also at internal nodes 

• Recheck periodically if splits pass Hoeffding test 

• If test fails, grow alternate subtree and swap-in 
when accuracy of alternate is better 

• Processing updates O(1) time, +O(W) memory 

• Increase counters for incoming instance,  
decrease counters for instance going out window

53

G. Hulten, L. Spencer, P. Domingos: “Mining Time-Changing Data Streams”. KDD ‘01



Hoeffding Adaptive Tree
• Replace frequency counters by estimators 

• No need for window of instances 

• Sufficient statistics kept by estimators separately 

• Parameter-free change detector + estimator with 
theoretical guarantees for subtree swap (ADWIN) 

• Keeps sliding window consistent with  
“no-change hypothesis”

54

A. Bifet, R. Gavaldà: “Adaptive Parameter-free Learning from Evolving Data Streams” IDA (2009)

A. Bifet, R. Gavaldà: “Learning from Time-Changing Data with Adaptive Windowing”. SDM ‘07



ADWIN
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ADWIN
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ADWIN
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ADWIN
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Adaptive Random Forest 
• Why Random Forests? 

• Off-the-shelf learner 

• Good learning performance Related publication 

Adaptive random forests for evolving data stream 
classification.

Gomes, H M; Bifet, A; Read, J; Barddal, J P; Enembreck, F; 
Pfharinger, B; Holmes, G; Abdessalem, T. 
Machine Learning, Springer, 2017. 

• Based on the original Random Forest by Breiman
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Adaptive Random Forest 
1. Simulates resampling through leveraging bagging 

2. Randomly select subsets of features for splits 

3. Uses Hoeffding Trees as the base learner 

4. 1 drift and 1 warning detector per tree 

5. Train trees in the background before adding them 

6. Trees are completely independent (can train in 
parallel)
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SAM-kNN

KNN Classifier with Self 
Adjusting Memory for 
Heterogeneous Concept Drift.  

Viktor Losing, Barbara 
Hammer, Heiko Wersing: 

Best Paper Award 
ICDM 2016: 291-300
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Clustering Quality 0% Noise 

27/06/13 

30 

Snapshot 25,000 instances 

Snapshot 45,000 instances 

Micro-Clusters
• AKA, Cluster Features CF  

Statistical summary structure 

• Maintained in online phase, 
input for offline phase 

• Data stream ⟨x⃗i⟩, d dimensions 

• Cluster feature vector 
N: number of points 
LSj: sum of values (for dim. j) 
SSj: sum of squared values (for dim. j) 

• Easy to update, easy to merge 

• Constant space irrespective to the 
number of examples!
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Tian Zhang, Raghu Ramakrishnan, Miron Livny: “BIRCH: An Efficient Data Clustering Method for Very Large Databases”. SIGMOD ’96



MOA Algorithms
• Multi-label/ Multi-target 

• Outlier Detection 

• Concept Drift Detection 

• Active Learning 

• Frequent Itemset Mining 

• Frequent Graph Mining 

• Recommendation Systems
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What’s next?
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streamDM C++
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http://huawei-noah.github.io/streamDM-Cpp/



Streaming

Vision

66

Distributed

IoT Big Data Stream Mining



APACHE SAMOA

67

http://samoa-project.net

Data 
Mining 

Distributed 

Batch 

Hadoop 

Mahout 

Stream 

Storm, S4, 
Samza 

SAMOA 

Non 
Distributed 

Batch 

R, 
WEKA,… 

Stream 

MOA 

G. De Francisci Morales, A. Bifet: “SAMOA: Scalable Advanced Massive Online Analysis”. JMLR (2014)



SAMOA ARCHITECTURE

5 CREATING A FLINK ADAPTER ON APACHE SAMOA

5 Creating a Flink Adapter on Apache SAMOA

Apache Scalable Advanced Massive Online Analysis (SAMOA) is a platform for
mining data streams with the use of distributed streaming Machine Learning al-
gorithms, which can run on top of different Data Stream Processing Engines
(DSPE)s.

As depicted in Figure 20, Apache SAMOA offers the abstractions and APIs for
developing new distributed ML algorithms to enrich the existing library of state-
of-the-art algorithms [27, 28]. Moreover, SAMOA provides the possibility of inte-
grating new DSPEs, allowing in that way the ML programmers to implement an
algorithm once and run it in different DSPEs [28].

An adapter for integrating Apache Flink into Apache SAMOA was implemented
in scope of this master thesis, with the main parts of its implementation being
addressed in this section. With the use of our adapter, ML algorithms can be
executed on top of Apache Flink. The implemented adapter will be used for the
evaluation of the ML pipelines and HT algorithm variations.

Figure 20: Apache SAMOA’s high level architecture.

5.1 Apache SAMOA Abstractions

Apache SAMOA offers a number of abstractions which allow users to implement
any distributed streaming ML algorithms in a platform independent way. The most
important abstractions of Apache SAMOA are presented below [27, 28].
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Stats

Stats

Stats

Stream

Model

Attributes

Splits

Vertical Partitioning

69

Single attribute 
tracked in 

single node

N. Kourtellis, G. De Francisci Morales,  A. Bifet, A. Murdopo: “VHT: Vertical Hoeffding Tree”, 2016           Big Data Conference 2016



Kappa Architecture

• Apache Kafka is a fast, scalable, durable, and 
fault-tolerant publish-subscribe messaging system.
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SUPPORTING 
ORGANISATIONS



StreamDM

72

http://huawei-noah/github.io/streamDM

http://huawei-noah/github.io/streamDM


Summary
• IoT Streaming useful for finding approximate solutions with 

reasonable amount of time & limited resources 

• MOA: Massive Online Analytics 

• Available and open-source 

•  http://moa.cms.waikato.ac.nz/ 

• SAMOA: A Platform for Mining Big Data Streams 

• Available and open-source (incubating @ASF) 

• http://samoa.incubator.apache.org
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http://samoa.incubator.apache.org


Open Challenges
• Times Series + Stream Mining 

• Structured output 

• Millions of classes 

• Ease of use 

• Applications: Predictive Maintenance, AI for IoT
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Thanks!

75

@abifet


