Recent trends in control synthesis for
hybrid systems: a personal view

Laurent Fribourg
LSV — CNRS & ENS Cachan, U. Paris-Saclay

November 4, 2016 - IRT SystemX



I
1l
IV

Vi
VII
VIII

Plan

Classical Control
Hybrid systems
Set-based approach
(Bi)simulation
MINIMATOR
Compositionality
Model reduction
Conclusion



|. Classical control

. Classical control



Schematic view of a control system

— Plant: dynamics with a state variable x(t) governed by
o dx/dt = f(x,u) (continuous-time form)
e x(t+1) = f(x(t),u(t)) (discrete-time form)

— Sensors: gives a partial information y(t) about x(t)
— Controller: computes the law u(t) as a function of y(t)

x(t)

——3| Controller |—{ Plant l >

F u(t)

Sensor

y(t)

http://www.dis.uniromal.it/~iacoviel/ .
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Principle of feedback

* Feedback: The actual operation of the control
system is compared to the desired operation and the
input u(t) to the plant is adjusted on the basis of this
comparison.

* Feedback control systems are able to operate
satisfactorily despite adverse conditions, such as
disturbances and variations in plant properties

http://www.dis.uniromal.it/~iacoviel/



Optimal control (the moon lander)

 Aim: bring a spacecraft to a soft landing on the lunar surface,
using the least amount of fuel

* The state variable x is a triple (h,v,m) with:
— h(t) height at time t
— v(t) velocity (= dh/dt)
— m(t) mass of spacecraft

 The control (or input) u(t) is the thrust at time t

http://www.dis.uniromal.it/~iacoviel/
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Moon lander

 Consider Newton’slaw: mdv/dt=- gm+u

This gives:
dv/dt=-g+u/m
dh/dt =v
dm/dt=-ku

 The problem is to find u(.) in order to

minimize the amout of fuel, i.e., maximize the amount
remaining once we landed, i.e., maximize J defined by:

J(u(.))=m(T)
where T is the first time: h(T)=0, v(T)=0.

http://www.dis.uniromal.it/~iacoviel/ | Classical control



Optimal Control

» Hamilton, Jacobi, Bellman 1957
» Euler, Lagrange, Pontryagin 1962
» Model predictive control
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History of Control — The Second Wave

http://www.control.lth.se/Staff/KarlJohanAstrom.html
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Limit: scalability

* The real subsystems are often numerous:
— Multi variable
— High dimension
— Nonlinear
— Time-Varying
— Poorly modelled

* Thus they are often outside the bounds of existing classical
theory, and/or existing computational tools

www.ifac-control.org/about/ifac-50-lectures/2-Anderson.pdf



Example

* The pitch control system on a commercial aircraft (2006) has
two inputs, two outputs, stochastic disturbance, is open loop
unstable. The state dimension is about 50.

e Challenge: How to design a (low order) controller

www.ifac-control.org/about/ifac-50-lectures/2-Anderson.pdf
. Classical control



New control problems

 Digital computer as a control system component:

- hybrid system (with switch control)
- (new) combinatorial explosion:

nb of possible switches grows exponential with time horizon

* Provable safe design

 Complex networked systems
* Sensor and actuator rich systems

 Autonomous distributed systems

http://www.control.lth.se/Staff/KarlJohanAstrom.html

. Classical control
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ll. Hybrid systems

The discrete-time dynamics of a hybrid system is

x(t+1)=f(x(t),u(t))

where u(t) is a discrete variable that takes its values on a
finite domain U, eg: {0,1} (instead of a dense domain, eg: [0,1])

The control synthesis problem consists in choosing ateacht=0,1,2,...
a mode (value of u) according to the current value of x
(or observation y) in order to meet a temporal property spec(x)

Il. Hybrid systems 11



A special class: switched systems

m A state variable X

m A set of pmodes U = {1,2,--- ,p}

m Each mode u € U is associated to a dynamic X = fy,(X)
m Switching modes can only occur at £ = 7,27, ---

m Restriction: Vu e U, JA,. by : fu(X) = A, X + by

ex: DC-DC converter

II. Hybrid systems
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Example: Boost DC-DC Converter

m A state variable X = (i, ’UC)T

II. Hybrid systems




Example: Boost DC-DC Converter

m A state variable X = (i, 'vC)T

m 2 possible modes U = {1,
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Example: Boost DC-DC Converter
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m A state variable X = (i;,v.)"
m 2 possible modes U = {1,2}
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Example: Boost DC-DC Converter

m A state variable X = (i;,v.)"
m 2 possible modes U = {1,2}

. _n 0 Vs
i-po=(F 0 ) (%)
e To+Te
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Example: Boost DC-DC Converter
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m A state variable X = (i;,v,) "
m 2 possible modes U = {1,2}
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Example: DC-DC Converter

m Modes: p=1,2 ; sampling period 7
m A pattern 7 is a finite sequence of modes (e.g. (2-1-1-1))

m A state dependent control consists to select at each 7 a mode (or a
pattern) according to the current value X of the state.

[I. Hybrid systems 18



Control Objectives (DC-DC Converter Example)
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m 1st objective (stability): output voltage regulation around
constant desired reference

m 2nd objective (safety) : while maintaining some constraints of

current limitation and/or maximal current and voltage ripple
[I. Hybrid systems




Safety and Stability Properties for the DC-DC
Converter

m Example of safety property to be checked: no saturation

vVt >0: i(t) < M

m Example of stability property to be checked: voltage regulation

|voutput (t) - vrefe'rencel <cforallt > T

II. Hybrid systems 20



Set-based approach

. Set-based approach
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Safety constraint and invariance set

 AsafesetSisaconstraint (i.e. a subset of the state space)
that should be always satisfied by the state of the system.

» Safety satisfaction can be guaranteed for all time if (and only
if) the initial state of the system is contained inside a
controlled invariant set of S.

. Set-based approach

22



Maximal Controlled Invariant Set
[Bertsekas-Rhodes 1971]

e Def: A subset X of Sis a controlled invariant subset of S if, for all x0O in X,
there is a controlled trajectory issued from x0 that always staysin S

* Prop: The maximal controlled invariant subset (MCIS) M of S exists.
Furthermore: xin M => f(x,u)in M  for some u.

Let X be a set of states and u a mode of U, we define the predecessor operators:
Pre_u(X)={x" | x=f(x,u) for some x of X }

Pre(X)=U Pre u(X)={x" | x=f(x",u) forsomexofX, uofU}

. Set-based approach 23



MCIS algorithm

* Algo
input: S
output: M maximal controlled invariant of S

Initially: M :=S
while  Pre(M) # M

M :=Pre(M) [ S
endwhile

NB1: Algo terminates if S finite
B2: M is the greatest fixed-point (gfp) of Pre contained in S.



Fixed-Points of Pre

MCIS of S = gfp(Pre) included in S = [ k Prek(S)

Basin of attraction of S = [fp(Pre) containing S = U k Prek(S)

Reach-avoid set of (S, A)

= set of initial points for which the controlled system reaches S
while always avoiding A

k
= Ifp(Reach-avoid) containing S = U_k Reach-avoid (S,A)
with Reach-avoid(X,A)={x’| x”in Pre_u(x)
& Preu(x) N A=g  for some control uand x of X}

. Set-based approach 55



Application to collision avoidance [Mmitchell-Bayen-Tomlin2004]:
determination of the unsafe zone using reach-avoid

S X, b"-’k ' ——— v —— —
7 -~ ] '."'\_‘
.. 2\ [—t'a +vpCOS T + ar{l
J b . —

T = T I.IQJ = l vbsinbz.'j;a:rl J f(z,a,b).

evader (player |) pursuer (player Il)

A={x1, x2 | x1?+ x2°< r*}

unsafe zone={initial position of red
plane (relatively to blue plane) for
which there is a risk of collision}

(=]

If the red plane is outside the 0

unsafe zone, the blue plane is 0, s 0
[ll. Set-based ¢h

always ensured to « evade » crhasedapproa
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Pursuer-evader gdMe [Tomlin-Mitchell-Bayen-Oishi IEEE 2003]

.ft'
= A
. . I3
- X| )
r —v + v COS T3 + UT9
. d .
T=—|T2| = vsinrz — ury = f(z,u,d),
(Player II) r3 d—u

Figure 4: Relative coordinate system. Origin is located at the center of the evader.

Figure 5: Growth of the reachable set [6] (animation at [60])

= ab & o

Figure 6: Other views of the reachable set [6] (animation at [60])
. Set-based approach
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V. Another approach: (bi)simulation

* Pb: non-termination of the fixed-point set calculation in case

of infinite state systems

* Idea: find a bisimular (= equivalent) and finite system

Physical System:

= x(t) = F(x(t), u(t))

Hybrid Controller:

u(t) = k(q(t), x(2))

&

q(t™) = g(q(t),x(1)) =

Symbolic Model:

S

P |

Refinement

IV. (Bi)simulation

Discrete Controller:

o 2 o

28



Bisimulation

Consider two transition systems T and T’ of state space 2 and 2’ resp.

Def: An equivalence relation R on 5 x 5’ is a bi-simulation if, for all (P,Q) of 5 x 5” with PR Q:

* Any move Q—a-> Q’ of Q can be matched by a move P —a->P’, withP’R Q’

* Conversely, any P—a-> P’ is matched by a move Q —a-> Q’, with PR Q'

Systems T and T’ are said to be bisimular

IV. (Bi)simulation
29



Construction of bisimular quotient automaton

Goal: To partition the infinite state-space of a system T into
finitely many equivalences classes so that equivalence classes
exhibit similar behaviors

(=» construction of a finite bisimilar quotient automaton T’)

™~

@

/

(Bilsi :
IV. (Bi)simulation 30



Principle of (bi)simulation

original system T quotient automaton T’

T []
([»o O

b 4

~

OO

spec: « there is no trajectory from green to red »

spec false for this quotient
~(green A<>red) for all trajectories

https.//www.lccc.lth.se/media/LCCC2013/WS1304/Slides/belta.pdf

31
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Quotient refinement

Xaa x|

I - /O_I’O

{ o

spec. becomes trueon T’

If the quotient T’ is a simulation of T, and spec is true for T’
then specis true for T

NB: spec restricted to universal properties

IV. (Bi)simulation 32



Quotient refinement

Partition is refined on X using Pre operator:

Xg’l B P're(Xl) NXo #0
Xoo =X\ X2y

IV. (Bi)simulation

33



Bisimulation algorithm

While there exist X; , X; such that 8 c X;n Pre(X;) Cc X;
X.',l = X.‘ n PTC(XJ)

Xio=X;\Xi

remove X;

add X;‘,l ,)(,-,9
endwhile

\ ..:‘_)

bisimulation x
= o~

- |
- - X
- ) |‘

I
- .'

A. Bouajjani, J.-C. Fernandez, and N. Halbwachs, 1991

* If the algorithm terminates,
the quotient is finite and bisimular to the original system

* The quotient can be used in lieu of the original system for verification of spec

Pb: Unfortunately, termination is rare!
IV. (Bi)simulation 34



Variant 1  (spec-guided refinement)

While there exist X; ,X; such that @ c X; n Pre(X;) c X;
.X,"l = .X" N Pre(Xj)
Xiz2 = Xi\ Xi
remove X;
(ldd -‘xi,l ,.-’{,-'-3
construct the quotient
model check the quotient
if the spec is satisfied

break

) simulation
-
- ‘ (
| - - -

O
endif
endwhile

A. Chutinan and B. H. Krogh, 2001.

If the algorithm terminates,

the quotient satisfies spec and simulates the original system
(no more bisimulation). The original system is guaranteed to satisfy spec.

Pb2: Unfortunately, the computation of Pre is difficult!

IV. (Bi)simulation



Variant 2  (not using Pre)

While TRUE
construct (an over-approximation of) the quotient
model check the quotient

if the spec is satisfied il Q
break: Vol .
endif = - . 1 simulation
refine (using some gia\ > | < i
partitioning scheme) — [EE
endwhile - O

x= f(x)

—s{_—{)

If the algorithm terminates, the original system satisfies spec.

NB: Refinement of the partition now involves a scheme independent of Pre

(e.g., split the « bad » state into two)

[Tiwari-Khanna 2002]
[Habets-van Schuppen 2004][Belta-Habets 2006]
[Kloetzer-Belta HSCC 2006, TIMC 2012]

IV. (Bi)simulation
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How to refine the quotient using Post

Post u(X) ={x’ | x’ = f(x,u) for some x of X }

Post_u(X1) Post_v(X7)

Transition X—u-> X' is added to the quotient T’
when Postu(X) N X' # @ inthe original system T

IV. (Bi)simulati
(Bi)simulation 37



Verification for discrete-time PWA systems

Example: toggle switch

IV. (Bi)simulation

38



Verification for discrete-time PWA systems
QO(Ry > 80A Ry < 20)

QO(Ry < 40 A Ry > 50)

¥ B & 4 ® 2 ¥ XX

Example: toggle switch

8

¥ & s 3 vyu 88

L " a2 P b > Rl x L

¥

= 2 8 2 3 32 858 2

—
-

w & W 4 4 9 B 4B 2

2 "» - = s = - © L) " »
L

-

Initial satisfying states
Initial violating states
Matlab tool: "FaPAS”
B. Yordanov and C. Belta, IEEE TAC 2010 (hyness.buedu/softwars:)
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V. MINIMATOR

https://bitbucket.org/ukuehne/minimator/wiki/Home

Romain Soulat, Ulrich Kilhne, Adrien Le Coént

V. MINIMATOR
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Centralized control synthesis
c(t+1) = f(x(t),u)

Goal: from any = € K + a, reach the target zone H.

Basic idea:

m Generate a tiling of B + «a

m Look for patterns (input
sequences) mapping the
tiles into K

m If it fails, generate another
tiling.

R+a

September 21, 2016 12 / 26



Centralized control synthesis
r(t+1) = fz(t), u)

Example of a validated pattern of length 2 mapping the tile X into R
with a tolerance in K 4 a + &:

spec(X):
m X CR+a
m X" =f(X,uyCR+a+¢
s Xt =f(Xtv)CR

) Pattern u - v depends only
on X

September 21, 2016 13 / 26




Reachability

Parametric extension of a tiling:

..................

..................

..................

R+a

Problem to solve: Find (the maximum value of) @ > 0 such that R + a
can be mapped into H.
= (Can be solved by constrained optimization algorithms

istributed control synthesis Septembet 21, 2016 14 / 26



Basic algorithm

target tolerance time horizon initial zone
7 2 K ¥
Input: R ¢ K Output: a tiling P of R+a satisfying spec (for some a > 0)

Initially, P := [R+a]
while true
if some tile X of P violates spec(X),
refine P by splitting X endif
endwhile

If the algorithm terminates, we have spec(X) for each tile X of P with:

spec(X) = reachability of R from X in K steps while always staying inside R+a+¢&
= Post n(X)c R for some pattern m of length <K
A\ Post w’(X) ¢ R+a+€ for all prefix i’ of it

B: if =0, spec states the invariance of R (with tolerance g) .



Reachability: backward iteration of the procedure

Rfl :R"'U:ll

[terated control of R = R + o'V towards R,

Sentemher 21 2N1A 158 / 264



Reachability: backward iteration of the procedure

_VA
2| -~
- R

R'=R+a "

[terated control of RY = R 4+ o) towards R, and R?) = R 4 ¢(2)
towards R,

= Compute a basin of attraction of I?

Distributed control synthesis September 21, 2016 15 / 26



Example: Two-room apartment

T, T,
heater 1
u AT, —T,)u,
$ o, ., y heat exchange

T,

Ty(t + 1) = fr(Ta(t), Ta(t), ua)
Ir(t + 1) = fa(Ta(1), Ta(t), u2)

{ Cfury {0 0 1 Iy : .
m Modes: (ug) — (0) : (1) . (0) : (1) ; sampling period 7

m A pattern 7 is a finite sequence of modes, e.g. (((1)) : (8) : G))

m A state dependent control consists in selecting at each 7 a mode (or a
pattern) according to the current value of the state.

a4/

V. MINIMATOR



Reachability and Stability Properties for the two-room
apartment

Input: £, ¢

Output: «a, controlled tiling of B + a

Guaranteed properties: reachability from K + a to R, stability in
R+¢c, safetyin R4+a+¢

T, 4
22°C :
m Stability: special case of
reachability, with a = 0.
18°C :
>
18°C 22°C T

September 21, 2016 10 / 26



Centralized control

Input: R =[18.5,22]?, e =1.5
Output: a = 6 in 4 steps, cpu time: ~ 20s

o
v

af /‘,’ 1 x o0=i12.12)
NI J

o
=
el room 1
X 0=(121
~ | 0=(12,19) % o
16 1 X 0=(2212) AT
//
“r / 14
12 // -
Y12 8 20 2z 0 100 00 0 40
T 1 Time (s)

Simulations of the centralized reachability controller for three different
initial conditions plotted in the state space plane (left); simulation of
the centralized reachability controller for the initial condition (12, 12)
plotted within time (right).

A. Le Coént, L. Fribourg, N. Markey Distributed control synthesis September 21, 2016 19 / 26



VI.

Compositionality

VI. Compositionality
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Switched Systems

We suppose that the system can be written:

m First component of the state =, € R™!
m Second component of the state ro € R™

n=mni+ n9

m First component of the control u; € U; with |U;| = N;
m Second component of the control us € Uy with |Us| = N»

U:U1XU2

A. Le Coént, L. Fribourg, N. Markey Distributed control synthesis September 21, 2016 7/ 26



Distributed control synthesis

$1(t+ 1)
;L'z(t + 1)

filz1(t), xalt), ur)
fa(@y(t), z2(t), uz)

Target zone: K = Ki X R»

. specl1(X1):

m XiCRi+a
im X' = fi(X1,Ro+a,u1) C Ry +a+e
i m Xl++ = fl(Xf, Ro+a+e,v1) C Ry

R+a ] Pattern u, - v; depends only on X,

September 21, 2016 17 / 26



Distributed control synthesis

I (t + ].)
To(t + 1)

filzi(t), za(t), ur)
falz1(t), za(t), ug)

Target zone: K = K1 X R»

: spec2(X2):

im Xo C Ro+a

m X, = f;g(Rl +a,Xo,up) € Ro+a+z
m )&EHL = fo(R1+a+ E,.X«+, v2) € Ro

| Pattern us - vo depends only on X

September 21, 2016 18 / 26



Soundness of the distributed control synthesis

If spec1(X1)and spec2(X2) are true, ie.:

m X\ CR +a m Xo C Ro+a
O "\’l‘ = fl(.xvl./i)-‘_g Fa,ul) C Ry +a+¢z and O "\"é = f;g(/i)l } (I,.\'-‘g.ll‘;g') e Ho+a+e
H -\rl‘ r = fl(-\l ) /1)2 + a + €, ‘1‘1) C 1{ . -}(2‘ "= f;)(/i); + a + 5..\’2’ .‘1‘2) - 1{2

Then spec(X) (with X=(X1,X2)) is true, ie.:

m X CH+a
m X" =f(X,uyyCR+a+¢
m X T =f(X",v)CR

with u=(ul,u2) and v=(vi1,v2)

Hence the distributed control achieves the goal of the centralized control

Advantage: the state dimension n and the nb of modes N have split in 2

Condition: requires the weak interdependency of the arguments of f o




Distributed control

Input: R =[18.5,22]%, e =1.5
Output: a = 6 in 4 steps, cpu time: ~ 20s

14 4 mar ;
4 X 0=(12,12)

et 1| X 0-(12,19) el

X_0=(22,12)
14 9 “ar
2r / 12 J

10 A A A A 10 A M A
10 12 e 16 18 20 22 0 100 200 320 400

T 1 Time (8)

room 1
room 2

T2
\\
Temperature

Simulations of the distributed reachability controller for three different
initial conditions plotted in the state space plane (left); simulation of
the distributed reachability controller for the initial condition (12,12)

plotted within time (right).

A. Le Coént, L. Fribourg, N. Markey Distributed control synthesis September 21, 2016 20 / 26




Seluxit case study

@ Kim G. Larsen, Marius Mikué¢ionis, Marco Muniz, Jiri Srba, Jakob H. Taankvist. Online and

Compositional Learning of Controllers with Application to Floor Heating. Tools and Algorithms for
Construction and Analysis of Systems 2016.

20



Seluxit case study

@ Kim G. Larsen, Marius Miku¢ionis, Marco Muniz, Jiri Srba, Jakob H. Taankvist. Online and

Compositional Learning of Controllers with Application to Floor Heating. Tools and Algorithms for
Construction and Analysis of Systems 20186.

System dynamics:

—T (t) = Z AF(T(t) — Ti(t)) 4 Bi(Ten(t) — Ti(t)) + Hij.v;

m System of dimension 11

m 2'! combinations of v; (not all admissible, constraint on the
number of open valves)

m Pipes heating a room may influence other rooms

m Doors opening and closing (here: average between open and
closed)

m Varying external temperature (here: 7., = 10°C)

m Measures and switching every 15 minutes

VI. Compositionality



Seluxit case study, guaranteed reachability and stability

Decomposition in 5 + 6 rooms (cf. [Larsen et al., TACAS 2016],
thanks to the Aalborg team for the simulator)

Evolution of room and outside temperature

22

Input:

R = [18,22]1
c=0.5

Teny = 10

Output:
a =4 1n 15 steps
cpu time: 6h 2

10

A A A A A i} A A
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Simulation of the Seluxit case study plotted with time (in min) for
Teny = 10°C.

VI. Compositionality



Seluxit case study, robustness test

Evolution of room and outside temperature

22 T

e T1
— T2

T4
— TS
e | -
e T 7
—T8
e T5)
T10
e T11
TENV

12 -

10 F

ol | o
L n —af —
6l AR

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Simulation of the Seluxit case study in the soft winter scenario.

VI. Compositionality



Seluxit case study, robustness test (2)

Evolution of room and outside temperature

26 AN 7 7Y

| f | f |
\ f
\ / \ / /
12 L J\/ L 1 9l A i Vi

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Simulation of the Seluxit case study in the spring scenario.

VI. Compositionality
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VII.

Model reduction

VII. Model reduction

61



Model order reduction

Original system :
x(t) = Ax(t) + Bu(t)

Construction of a reduced order system 3 of lower dimension :
&(t) = A%(t) + Bu(t), (1)
Reduction by Balanced Truncation [Antoulas, Gucercin, 2004] : X = 7, x

Synthesis of the control rule u( -) at the low-order level and application at
the full-order level.

Requirements :
® bounding of the error &, = |Postp,:(X) — 7, Postpa:(x)|

VIIl. Model reduction 62



Reduced order control synthesis

Input : R,e, Output : a tiling P of R satisfying spec(X)

Initially, P :== R

while true
if some state X of P violates spec(X)
refine P by splitting X
endif

endwhile

spec(X) takes into account the reduction error
Available for stability and attainability
ex (stability) : spec(X) = Postp;(X) C R — &,

63



Guaranteed on-line control

Simulation on a linearized model of a distillation column
[Tong-Zhou-Wang-Moul4| : n=11and n, = 2 :

2

..........................

.........................

2

0008

000

VII. Model reduction
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VIIl.  Many important issues not mentioned!

Guards of hybrid systems (PWA)

Non linearity

Continuous-time dynamics

Data structures (eg, zonotopes [Girard 2005])
Observability

Robustness

Uncertainty

Stochasticity



IX. Recapitulation

* Affine switched systems (special class of hybrid systems)
e Set-based approach

* Symbolic simulation using Post

e Compositionality

— Safety-provable design with increasing scalability
(nb of continuous variables: n = 3in 2004, n = 5in 2010, n = 11 in 2016, ...)

66
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