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@ Why Causality ?
@ Example: Fault Diagnosis in Telecommunications
@ So, what is needed ?

@ Discrete Events, Partially ordered: Occurrence nets
o Testing Causality
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Why Causality ?

Fault Diagnosis in Telecommunications

Supervision SDH ring (Benveniste, Fabre, Haar et al, 2001 etc)
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Why Causality ?

Telecom Supervision: Fault Propagation

51 Ouen Aubarvilliers

... but one observes only dots, not arrows
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Why Causality ?

Asynchrony between occurrence and observation
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Why Causality ?

Asynchrony + Distribution
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Why Causality ?

The Post hoc ergo propter hoc fallacy

Description (from changingminds.org)

o If X follows Y, then X is caused by Y. (The sequence of things proves cause.)

Examples

@ The man pulled out a gun. A shot was fired. Therefore the man fired the
shot.

@ You used the telephone and then it stopped working. You broke the phone.
@ | am feeling very unwell. It must have been the meal last night.

Discussion

@ Just because something follows something else, this is not sufficient evidence
to prove true cause and effect. This temporal relationship may simply be
coincidence.

e Coincidence is often related to superstition — hence saying 'bless you’ when
someone sneezes (it is assumed that sneezing lays a person open to spiritual
attack) or throwing salt over your shoulder when you spill it (it is assumed to
cause bad luck otherwise).
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Why Causality ?

So, what is needed ?

Observation is not enough

@ Confront observations with a model of possible behaviours

@ The model should contain all the information on causal dependencies, and
nothing else

Modelling abstraction

@ Separate the crucial functionalities and model only them

o In the TIC example: ignore traffic, focus on fault propagation
@ Drop non-crucial quantities (yes, including time stamps !)
@ Be skeptical about time and aware of space

@ Post hoc 4 propter hoc:
o Partial order of causality vs total order of time
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Why Causality ?

Example

cont'd: SDH Laser Failure

alam LOS
alarm TF nofification State_Change ()
notification State_Change() + vertical propagation
—
alarm LOS B alarm TF
+ vertical
propagation -
OpticalSPITTPBdir # 4 Optical SPITTPBdir
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Why Causality ?

Generic model for Managed Object

Message

Managed Object |

Precondition

3

)
J

Conidificsn

Conad vhoa

oo i 1)

1__._

Postcondition

Alarmes
&

T Messages

11/53



Why Causality ?

Combining Objects in Scenarios
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Why Causality ? Discrete Events, Partially ordered: Occurrence nets

From Scenarios to Petri Nets
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Why Causality ?

From such situations ...
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Why Causality ?

. retain such pictures and analyse them !

Ss F— A

Correlate observation with causal model
o will use Petri nets with partial order semantics
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Discrete Events, Partially ordered: Occurrence nets

Post hoc sed non propter hoc

9 Discrete Events, Partially ordered: Occurrence nets
@ Testing Causality
@ Diagnosis with Concurrency
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Discrete Events, Partially ordered: Occurrence nets

Petri nets, Processes, Branching Processes and Unfoldings

Petri net:
@ @

Process: representation of a
non-sequential run as a partial order.
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Discrete Events, Partially ordered: Occurrence nets

Petri nets, Processes, Branching Processes and Unfoldings

Petri net:
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Discrete Events, Partially ordered: Occurrence nets

Petri nets, Processes, Branching Processes and Unfoldings

Petri net:

N
ayugr

he e

Process: representation of a

non-sequential run as a partial order.

Branching process: representation of
several runs.

Unfolding: maximal branching process.
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Discrete Events, Partially ordered: Occurrence nets

Nets and Structural Relations

The structure of a net induces three relations
over its nodes:

Causality <

e<f & eF* f (directed path from e to f)
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Discrete Events, Partially ordered: Occurrence nets

Nets and Structural Relations

The structure of a net induces three relations
over its nodes:

Causality <

e<f & eF* f (directed path from e to f)

Conflict #

e#ag& etgnteng#D
f#h & Je<fg<h:e#ag
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Discrete Events, Partially ordered: Occurrence nets

Nets and Structural Relations

over its nodes:

jsgge
e<f & eF* f(directed path from e to f) @\

Q99
e#ag& etgnteng#D g
O p\ O

The structure of a net induces three relations /D\

f#h & Je<fg<h:e#ig

Concurrency co D
feoi & =@i# f)A-GE<)A-(f <i) feoi
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Discrete Events, Partially ordered: Occurrence nets

Occurrence Nets [Nielsen, Plotkin, Winskel, 1980]

Definition (Occurrence net)

An occurrence net (ON) is a net (B, E, F') where
B and FE are the sets of conditions and events,
and which satisfies:

@ no self-conflict,

@ acyclicity
@ finite causal pasts: Ve € E, g
[e] £ {¢/: ¢ < e} is finite. ®

@ no backward branching for conditions,

@ L € E is the only <-minimal node
(event L creates the initial conditions).
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Discrete Events, Partially ordered: Occurrence nets

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set w of events which is

@ causally closed: Ve € w, [e] C w,

o conflict free: Ve € w, #[e] Nw = 0. E R

A run is a maximal (w.r.t. C) configuration. p @ @
s W
2 denotes the set of maximal runs. /CD\ /CD\ p

miguign
& dos ¢ ®
Q gives exactly the weakly fair (nonsequential)
executions: l;] l;] l;]
@ No transition remains enabled for ever (i.e. o © O
without firing, or being disabled by a

conflicting transition): weak fairness
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Discrete Events, Partially ordered: Occurrence nets

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set w of events which is
o causally closed: Ve € w, [e] C w,
e conflict free: Ve € w, #[e] Nw = 0.

A run is a maximal (w.r.t. C) configuration.

Q) denotes the set of maximal runs. j

Interpretation 4

Q gives exactly the weakly fair (nonsequential)
executions:

@ No transition remains enabled for ever (i.e.
without firing, or being disabled by a
conflicting transition): weak fairness
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Discrete Events, Partially ordered: Occurrence nets

Using Occurrence Nets

A Data Structure representing Causality

@ No arrow chain, no causal link (see below however)

@ Concurrency as the dual of causality

@ Testing (next)

o Diagnosis for Telecom supervision (later)
o Verification of programs (not here)

e Systems Biology (not here)

@ ... (you name it)
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Discrete Events, Partially ordered: Occurrence nets

Testing causality (H. Ponce de Leon et al, since ~ 2011)
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Why Causality ? Discrete Events, Partially ordered: Occurrence nets Beyond Precedence Conclusion

Example
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d Precedence Conclusion

Why Causality ? Discrete Events, Partially ordered: Occurrence nets

PN model ...
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Why Causality ? Discrete Events, Partially ordered: Occurrence nets Conclusion

and its partial order of events
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Discrete Events, Partially ordered: Occurrence nets

Traces
1 s
Tins — |'l.‘l:'||]:Ii —F lus_data 'y ff?:C.IJ:l': — lys_data
Thramm Tims
pries; 1 Iprace, Ve 3,
ur ]

Use for checking conformance with specified causality (and concurrency)
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Discrete Events, Partially ordered: Occurrence nets

Test Cases
1 s
Tins — |'l.‘l:'||]:Ii —F lus_data 'y ff?:C.IJ:l': — lys_data
Thramm Tims
pries; 1 Iprace, Ve 3,
ur ]

Use for checking conformance with specified causality (and concurrency)
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Why Causality ? Discrete Events, Partially ordered: Occurrence nets Beyond Precedence Conclusion

Concurrency in Specification

Tickets Server Tickets Server
?plane ?plane
Fus_dafa Ius_dofa
Ipricep Ipricep
S 53
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Discrete Events, Partially ordered: Occurrence nets

Causality in Testing

Asynchronous Testing with PNs

@ Avoids concurrency pitfalls (observability etc) known from multi-channel
testing over FSM
o Can:
e test for respect of causal dependencies from specifications
o tolerate ordering of some concurrently specified events ('don’t
care-concurrency)
e test for respect of intended or strong concurrency
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Discrete Events, Partially ordered: Occurrence nets

Testing for concurrency: Vector clocks
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Discrete Events, Partially ordered: Occurrence nets

Testing for concurrency: Vector clocks
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Discrete Events, Partially ordered: Occurrence nets

Diagnosis with Concurrency

Back to the Telecom Example

@ PN model of fault propagation

@ one or more strings of alarms

@ correlate via product

o filter out partially ordered explanations (configurations)

@ Supposing Diagnosability (another long subject... )
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Discrete Events, Partially ordered: Occurrence nets

Telecom Supervision

=,
=
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Discrete Events, Partially ordered: Occurrence nets

Diagnosis with unfoldings

A Success Story

Causal/Concurrency model adequat
. and efficient: store only partial order, not all its interleavings
Scales up wrt growing number of parts

°
°

@ Allows distribution

@ Run successfully on ring supervision platform
°

Handles centralized and distributed monitoring

| A

Can do more

@ Partial order structures reveal dependencies and implication across parallel
processes

@ Exploited in weak diagnosis — NEXT
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Beyond Precedence

Post hoc sed non propter hoc

© Beyond Precedence
@ What Concurrency can reveal
@ Weak Diagnosis
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Beyond Precedence

Some actions reveal one another
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and therefore makes x inevitable:

zrevealsxr : zb>x
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Beyond Precedence

Reveals Relation [Haar, 2010]

Definition (Reveals relation 1)

Event e reveals event f, written e > f, iffVw € Q, (e Ew = [ € w).

Causal closure

Ey

Ve,ye B,z <y=yd>x

dv> a,
ho> L, @ @ @
a>d
because of weak fairness, @
avc @ @
because for any maximal run w,

= ¢ € w (weak fairness)

acEw = bdw
()

®-=]
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Reveals Relation [Haar, 2010]

Definition (Reveals relation 1)

Beyond Precedence

Event e reveals event f, written e > f, iffVw € Q, (e e w = [ € w).

Lemma

Lemma: Characterization of Q) by # A set of
events w Is a maximal run iff

Va € E,a ¢ w<& #la]Nw #0

where #[e] £ {f € E | f # e}.

Characterization of > by #

Ve,f € E, e f & #[f] C #le]
i.e. any event that could prevent the occurrence
of f is prevented by the occurrence of e.

=]

4o<®
)
Q4
4=

@
©

®=]
®-=]

]

3
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Beyond Precedence

Facets Abstraction [H2010,BCH2011]

Definition (Facets)

A facet of an ON is an equivalence
class of ~ =N >"1
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Beyond Precedence

Facets Abstraction [H2010,BCH2011]

Definition (Facets) Reduced ON] Contracting Facets yield
A facet of an ON is an equivalence (bigger) events for a reduced ON
class of ~ =N >"1 reduced ON is an ON (B, ¥, F) such
that Vip1, 12 € U, 91 ~ Yo & 1 = .
=== ===y
: : vapy

§ 900 s
jofi} 5 d
NONCR L R — |
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Beyond Precedence

Concurrency vs Logical Independency [BCH2011]

@ #, < and co are mutually exclusive. %

Structural relations and logical dependencies
@ a # b < for any run w, {a,b} Z w. [a] 5]

ea<b=foranyrunw,bew=acw (b>a),

@ Does a co b mean a and b are logically y
independent 7 ccoaandcb>a

No, they can be related by . a coband a ind b.
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Beyond Precedence

Concurrency vs Logical Independency [BCH2011]

@ #, < and co are mutually exclusive. %

Structural relations and logical dependencies
@ a # b < for any run w, {a,b} Z w. [a] 5]
ea<b=foranyrunw,bew=acw (b>a),

@ Does a co b mean a and b are logically y
independent 7 ccoaandcb>a

No, they can be related by . a coband a ind b.

Independency relation ind

Va,be U, aindb & —(a#b)A-(b>a)A-(a>b)
< acobA—(bra)A—(a>b)

@ #, > and ind are also mutually exclusive.
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Why Causality ? Discrete Events, Partially ordered: Occurrence ne Beyond Precedence Conclusion

Extended Reveals Relation

Definition (Extended reveals relation)

Let A, B be two sets of facets.
A reveals B, written A — B, iffVw € Q,ACw = BNw # 0.

Properties
o {a} »{b}=arb

o Conflicts can be expressed with this extended reveals relation:
{a,b} =0 < a#0D.
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Extended Reveals Relation

Examples

A—-B & YweQACw=BNw#

SEN R/@\R

QY P
ol

{c,e = {a} {a,b} = {c,c,d}
{c.d,e} = {a} {a} = {c,d}

{elae} - (Z) [Z) — {a,a’}



Beyond Precedence

Diagnosis: Sequential Semantics Misses a Point

Suppose that
° TO = {bay}
o & ={v}

v will be correctly

diagnosed if y occurs.
What if not ? If

bbbbbb . . .

is observed, what do we
infer about v ?
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Beyond Precedence

It's about weak fairness !

Still with
o Tp = {bvy}
o & ={v}

the only way for the
system to do b is to be
unfair to v: always
enabled, never fired
HERE: diagnosis under
weak fairness
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Beyond Precedence

Extended Reveals+Diagnosis

Application
e A — B iff p's containing A must hit B

@ Used for weak diagnosis:
Given an observation pattern «, are all weakly fair extensions of explanations
of a faulty 7

|

Weak Diagnosis
Observation pattern o weakly diagnoses fault ¢ iff

Ceerplla) = C— Ey
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Beyond Precedence
Weak Diagnosis
Spoilers
Let t € T. The set of t's spoilers is
spoil(t) 2 {t' e T | *t' N *t # 0}.

Note : t € spoil(t) !

Weak Fairness

|

A run p = Moty Mits... is weakly fair iff every transition ¢ enabled in some M} is
disabled in some M ;; that is, eventually one of t's spoilers fires |

V.

There is w weakly-fair and fault-free iff there C1
are configurations Cq,C» such that:
QCiCC 1

@ mark(C1) = mark(C»)
© C; enables e = spoilers(e) N Ca # () c
Q (5 is fault-free 2
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Beyond Precedence

Solving the weak diagnosis problem
Weak Diagnosis Problem

Ccemplle) == C—E, (+)

Y

@ Take a marking-complete prefix By
@ Stop unfolding at sp-cutoff events e, i.e. there is ¢/ < e s.th. , for
D = [e]\[¢],
o f(*D\D*) = f(D*\*D) and B1N°*D =0,
l.e. e and €’ spoil exactly the same events enabled by configurations from Bj.
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Beyond Precedence
Decision method

Prefixes needed

@ P,: contains all succinct explanations of «

e P!: marking-complete

e P2 contains all non-sp-cutoffs; P! C P?
ALL ARE FINITE !l

config,P) £ (\ N\ @l=4l)) A

ecEe'c®%e

( A amo(vl,,...,v,)) A (N ovbe (N dbn N\ b))

ce€B,{e1,...,en }=c® ceEB ec®c ecc®

@ Similarly : configuration containment, reachability, enabling, spoiling,
explanation,...

@ Diagnosis checkable with SAT solvers
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Conclusion

Post hoc sed non propter hoc

@ Conclusion

48/53



Conclusion

Causality is more informative than time

Modelling abstraction

@ In the causal partial order model, dependence relations are local

@ Spurious 'ordering’ from observation avoided

Often: computation time + space gained

Always: conceptual error avoided

Causal precedence implies temporal one, but not the other way around

Be skeptical about time and aware of space

Fields that should be causality-aware

@ Telecom, Web services

@ Supervision of Networks
e Forensics

@ Business (and other) processes
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Conclusion

A Partial To Do list (for research)

Diagnosis
@ Pursue active diagnosis: if observation is insufficient, force more significant
output

@ Be sure to do save active diagnosis: don't force occurrence of a fault only so
you can diagnose it

@ Generalize reveals to probabilities
v

@ Infer or improve causal models via log analysis

@ Separate causal from spurious
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Conclusion

Food for thought

Time < Causality ?

@ Philosophical definitions of causality tend to use temporal precedence ;
o Conversely, time is captured via causal chains: 777

@ Indirect causalities ('reveals’) may transcend temporal orderings and jump
between causal chains;
° o however, weak fairness was needed to capture them, i.e. a temporal property
is at the heart of reveals;
e moreover, thus far we need vector clocks to test strong concurrency;

Maybe time and causality are inextricable 7

Remark: do not confound causality and inference
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Conclusion

Thanks
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Conclusion
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