System-of-Systems, a new way to see systems

Jean-Luc Garnier
jean-luc.garnier@thalesgroup.com
Who am I?

30+ years of experience:
> 5 years in the “NTIC”: Networks, telecoms, compilers and language theory, simulation.

20 years in development of systems:
> Radar: signal processing, data processing and hardware architecture
> Integrated Modular Avionics (ARINC, ASAAC)
> Electronic Warfare: architecture and Domain Design Authority
> Systems of Systems, Net-Centric Operation and Network-Centric Warfare: Architecture and Principles

Current position:
> Coauthor of the Thales Systems Engineering Methodology (Sys-EM)
> AFIS Technical Director and INCOSE CAB representative
> Convener on standardization works: ISO, AFNOR, EDA, NATO
> Coach and Trainer for Architecture and Operational Concepts (Thales and externally)
Thales Global Presence

Employees
61,000

Global presence
56 countries

IRT SystemX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
Thales Businesses

EACH OF THE MARKETS THAT THALES SERVES PLAYS A VITAL ROLE IN SOCIETY.

AEROSPACE

SPACE

GROUND TRANSPORTATION

DEFENCE

SECURITY

€ 13 billion euros

Self-funded R&D

675 million euros
Aims of the presentation

- Why to care about Systems of Systems (SoS), even if working on “simple” products or systems.
- The added value of the SoS approach
- The SoS pain points and challenges (opportunities for research!)
Agenda (45’)

- “Well-known” examples of large Systems of Systems
- Definitions: Product, System, System of Systems, Solution
- Characteristics and classifications of SoS
- Systems Engineering principles for SoS
- Focus of modelling and Architecture Frameworks
- SoS approach for products and systems
- Paint points and challenges regarding SoS
- Conclusion
An example with Air Operations (Source: SESAR)

Make several systems working together and get synergy towards common objectives: end-to-end services, traffic, energy, time, etc.

Implementation of SoS is already started [more or less known as such]

IRT SystemX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
Military operation (Source: US-DoD)
Global Earth Observation (Source: ESA)
Interdependence between Domains in Societal SoS

(Source: T-AREA-soS)

IRT SystemX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
Definitions

Product:

➢ Result of a process. [Source: ISO/IEC 15939:2007]

➢ A Product is intended to be sold, directly or indirectly (internal product) to customers for satisfying their expectations and meeting their operational requirements. A Product can be a hardware or software equipment or a service or a system or a generic solution. [Source: Thales]

System:

➢ Combination of interacting elements organized to achieve one or more stated purposes. An integrated set of elements, subsystems, or assemblies that accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people, information, techniques, facilities, services, and other support elements. [Source: INCOSE]

Solution scope:

➢ The solution covers not only the development of the operational system but also the enabling products: system for designing, producing, installing the operational system (e.g., test resources), support system (system supporting the operational system, e.g., training, distribution and repair network). [Source: Thales]
In this example, we develop and sell buses.
Any element necessary to understand the product in its environment, over its life cycle (Systemic Approach).

Note: The Operators (Driver(s)) are part of the system.
Any enabling system sustaining the system of interest over its life cycle: development system, delivery system, maintenance system, etc.
Be careful about the different scopes of solution.
What is a System of Systems?

> SoS is defined as an arrangement of systems that results when independent and useful systems are integrated into a larger system that delivers unique capabilities (Defense Acquisition Guide).

Note: Any of the constituent systems could be an SoS

IRTSystenX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
Some agreed bases... but far from being formal

MAIER’s criteria
- Operational independence of the component systems
- Managerial independence of the component systems
- Evolutionary development
- Emergent behavior
- Geographic distribution (no shared resource)

Considering criteria dependencies
- Evolutionary development is a consequence of integration of independent component systems
- Emergent behavior is a consequence of operation of independent component systems
- Resource segregation is required for independent systems

Pain points are:
- Operational independence → interoperability
- Managerial independence → Project management and Systems Engineering

Need for research!
Some agreed bases… but far from being formal

MAIER’s criteria
- Operational independence of the component systems
- Managerial independence of the component systems
- Evolutionary development
- Emergent behavior
- Geographic distribution (*no shared resource*)

In reality: never totally satisfied

John Boardman & Brian Sauser “System of Systems – the meaning of of”
- Autonomy (independence) vs Belonging to SoS
- Geographical distribution VS Connectivity
- Diversity & Emergence VS SoS objectives

Compromise have to be got
SoS-Specific developments

Federation / Orchestration Management System

• • • • • • •

Constituent systems

SoS Constituent mediation adaptors

SoS Infrastructure / Connectivity

E.g. See NATO NC3 taxonomy and NISP (unclassified) and NCOIC

Major problems

• Doctrines

• Semantic

• Protocols

• Interfaces
One of the proposed classifications

Virtual SoS

Collaborative SoS

Acknowledged SoS

Directed SoS

Based on Dahmann & Baldwin, 2008
Another Classification from the French MOD

Management styles (how to get them?)

Single [complex] system

Directed

Local

Global

Centralised

Shared

Set of Interoperating systems

Individual

Various types of SoS have to be considered

IRT SystemX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
SoS Engineering Key Concepts

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Traditional Systems Engineering</th>
<th>System-of-Systems Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Development of single system to meet stakeholder requirements and defined performance</td>
<td>Evolving new system-of-systems capability by leveraging synergies of legacy systems</td>
</tr>
<tr>
<td>System Architecture</td>
<td>System architecture established early in lifecycle and remains relatively stable</td>
<td>Dynamic reconfiguration of architecture as needs change; use of service oriented architecture approach as enabler</td>
</tr>
<tr>
<td>System Interoperability</td>
<td>Defines and implements specific interface requirements to integrate components in system</td>
<td>Component systems can operate independently of SoS in a useful manner. Protocols and Standards essential to enable interoperable systems</td>
</tr>
<tr>
<td>System “illities”</td>
<td>Reliability, Maintainability, Availability are typical illities</td>
<td>Added “illities” such as flexibility, adaptability, composability</td>
</tr>
<tr>
<td>Acquisition and Management</td>
<td>Centralized acquisition and management of the system</td>
<td>Component systems separately acquired and continue to be managed as independent systems</td>
</tr>
<tr>
<td>Anticipation of Needs</td>
<td>Concept phase activity to determine system needs.</td>
<td>Intense concept phase analysis followed by continuous anticipation, aided by ongoing experimentation</td>
</tr>
</tbody>
</table>

With “Agile” approach, Systems Engineering will move towards SoS Engineering!
SoS System Engineering Steps and cycles

- Monitoring and Assessing Potential Impacts of Changes on SoS Performance
- Orchestrating Upgrades to SoS
- Assessing Performance to Capabilities Objectives
- Translating Capability Objective
- Translating into High-Level SoS Requirements
- Developing, Evolving and Maintaining an Architecture for the SoS
- Understanding Systems and Relationships
- Coordinate, monitor and facilitate systems’ development, test and evaluation
- Process validation
- Capability assessment
- Sets of systems Integration Verification & validation
- System Characterisation

Operational Process Definition
System Capability Definition
Identification of candidate systems
Negotiation with systems
Plan development

Independent Systems Engineering and Operations

IRT SystemX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
Strong need for evolution of the S.E. standards to deal with SoS

Main Systems Engineering reference documents:
- ISO/IEC/IEEE 15288 Systems and software engineering — System life cycle processes
- ISO/IEC/IEEE 15289 Systems and software engineering — Content of life-cycle information products
- ISO/IEC 24748 Systems and software engineering — Life cycle management
- INCOSE Systems Engineering Handbook

A handbook is available in the Thales Reference System to provide guidance on SoS
Main models to be considered for SoS
Architecture Frameworks: NATO example

- **NATO Capability View**: Documents the strategic picture of how military capability is evolving in order to support capability management and equipment planning.

- **NATO Operational View**: Documents the operational processes, relationships and context to support operational analyses and requirements development.

- **NATO System View**: Documents system functionality and interconnectivity to support system analysis and through life management.

- **NATO Technical View**: Documents policy, standards, guidance and constraints to specify and assure quality expectations.

- **NATO Program View**: Documents programme dependencies, timelines and status to inform programme management and procurement synchronization.

- **NATO Services View**: Documents Services functionality, constraints and interoperability.

- **Human Factors View**: Documents Human Concepts, Constraints, Functions, Roles, Human Networks, Training, and Metrics.

This document may not be reproduced, modified, adapted, published, translated in anyway, printed or in part or in whole without the prior written consent of THALES. © Thales 2016. All rights reserved.
Human views: Adaptation of UK-MOD and NATO works

NSV-8
NSV-9

System and Technology evolution

HV-B Constraints

Concepts of Operations
NOV-1

HV-E Human Network

Communication

Needlines

Interoperability

NSV-3

NSV-6

Exchange

HV-F Training

Exchanges

NOV-2

NOV-3

NOV-4

Organisation

HV-D Roles

NOV-5

Behaviour

NOV-6

NSV-7

Quality Requirements

NSV-10

Rules, States and modes

руж

NSV-4

NSV-5

Functions and activities

HV-G Metrics

HV-C Tasks
Let's consider this

And also this

Or this
SoS criteria apply to products (systems)

Do you think the provider master the life cycle of the components?
> Operating systems Windows, Linux, Android, etc
> Devices (disk drive, hardware plug-ins, etc).

Call this “managerial independence”

Do you think we master the life cycle of the applicative components?
> Office tools
> On-board and off-boards apps.

Call this “Operational independence”

SoS approach is a way to better understand problems in products and systems:
> Emergent behavior
> Evolutionary development
> Dependability (segregation resources and functions)

Maier’s criteria also work for products!

IRT SystemX - SoS seminar, 12 January 2016
Technical Directorate, System Domain
SoS approach is a way to better understand multi-systemic composition

Each of the major product parts can be studied with a systemic approach. i.e. Combination of interacting elements organized to achieve one or more stated purposes. An integrated set of elements, subsystems, or assemblies that accomplish a defined objective. These elements include products (hardware, software, firmware), processes, people, information, techniques, facilities, services, and other support elements [see INCOSE definition]
SoS approach is a way to better understand multi-systemic composition

- Product parts can be studied with a systemic approach:
 > Driving system
 > Energy system
 > Propulsion system
 > Breaking system
 > Navigation system
 > Multi-media system
 > Etc.

- SoS criteria allow refining the operational analysis, WBS, OBS & PBS.
SoS approach is a way to better understand multi-systemic composition

Product parts can be studied with a systemic approach:
- Driving system
- Energy system
- Propulsion system
- Breaking system
- Navigation system
- Multi-media system
- Etc.

SoS criteria allow refining the operational analysis, WBS, OBS & PBS.

SoS approach could be a way to secure the development and operations:
I.e. to prevent emerging problem, dependability, etc.

Example 1: after Jeep hack, Chrysler recalls 1.4 M vehicles for bug fix.

Example 2: In a car, battery is a single point of failure: breakdown consequence? Why not having two?
SoS approach is a way to better understand the PLM challenges

<table>
<thead>
<tr>
<th></th>
<th>System 1</th>
<th>System 2</th>
<th>System 3</th>
<th>System 4</th>
<th>System ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product A</td>
<td>Usage /</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Life-cycle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product B</td>
<td>Period 1</td>
<td></td>
<td>Period 4</td>
<td>Period 4</td>
<td>Period 1</td>
</tr>
<tr>
<td>Product C</td>
<td></td>
<td></td>
<td>Usage /</td>
<td>Usage /</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>component</td>
<td>component</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>life-cycle</td>
<td>life-cycle</td>
<td></td>
</tr>
<tr>
<td>Product D</td>
<td>Period 1</td>
<td>Usage /</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>life-cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product E</td>
<td>Period 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product ..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Life-cycles of the systems are transverse to the life-cycles of the reused products.
N-P complexity problem.
Main challenges identifies for SoS development

(Source: Thales)

<table>
<thead>
<tr>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Contracting of SoS dynamically defined</td>
</tr>
<tr>
<td>2- Multi-layer agile Systems Engineering and agile SoS breakdown</td>
</tr>
<tr>
<td>3- Dynamic loose coupling and (re)configuration of constituent systems</td>
</tr>
<tr>
<td>4- Flexible paradigms for interaction (mix of services, artefacts, events and streams)</td>
</tr>
<tr>
<td>5- Behaviour (multi-level consistent scheduling + non-functional properties)</td>
</tr>
<tr>
<td>6- Multi-level life cycles management</td>
</tr>
<tr>
<td>7- Engineering process to meet both bottom-up; top-down; dynamic system insertion/removal; legacy alignment</td>
</tr>
<tr>
<td>8- Run-time Management, Integrated logistic support and training on SoS or system built dynamically</td>
</tr>
<tr>
<td>9- Modelling and simulation to estimate feasibility, forecast behaviour and provide a reference for management</td>
</tr>
</tbody>
</table>
4 main European support actions on SoS

T-Area-SoS:
- Towards a SoS roadmap
- Supply-side driven
- Top-Down approach
- Systems Engineering
- US-EU

Road2SoS:
- Towards a SoS roadmap
- Sector/demand-side driven
- Bottom-up approach
- Consulting industry experts
- Use cases: Energy, Manufacturing, Crisis Management, Traffic Control

Danse:
- Designing for adaptability and evolution in SoS Engineering
- SoS engineering approaches
- Use cases: Air Traffic Management; Autonomous Ground Transportation; Water Treatment and Supply

Compass
- Comprehensive Modelling for Advanced Systems of Systems
- Model-Based tools
- Use cases: Emergency Response; Audio/Video/Home; Automation Ecosystem; Integrated Modular Avionics.

https://www.tareasos.eu/
http://www.road2sos-project.eu
http://www.danse-ip.eu/home/
http://www.compass-research.eu/
Conclusion

- **Systems of Systems**
 - Literature gives the main principles about Systems Engineering of SoS
 - Systems of Systems are now characterised
 - Architecture Frameworks strongly help for SoS Systems Engineering
 - Major pain points remain about SoS

- **SoS approach is also valid for product development**
 - Systems using products might be engineered with an SoS approach
 - Systems Engineering will move towards the SoS approach → Agile SE and SE with multiple Life cycle management.

- **Many research opportunities exist…**
 - But, need focus on the right problems
If you are interested in Systems Engineering of SoS:

- INCOSE SoS Working Group
- ISO JTC1/SC7 SoS Study Group
- AFIS “3S-AI” Technical Committee