

Urban Electric Vehicle Fleets: Strategic and Operational Management

Jakob Puchinger

Seminar@SystemX, Paris 08/12/2015

Co-authors:

AIT Austrian Institute of Technology: Johannes Asamer, Martin Reinthaler, Markus Straub, Gerhard Hiermann, Pamela Nolz University of Vienna: Richard Hartl, Mario Ruthmair

PUC-Rio – Pontifical Catholic University of Rio de Janeiro: Thibaut Vidal

Motivation – Urban Electric Mobility

No local emissions

• Technological advances

- Extended range
- Cost-efficiency

However

- High initial cost
- Still limited range
- Time-consuming recharging

Urban Electric Mobility - Decision Making

Main challenge:

• Limited range and long recharging times

Strategic decisions:

- Location of charging stations
- Long-term fleet mix

Operational decisions:

- Vehicle allocation
- Tour planning

Strategic Planning – Location of Charging Stations

Charging Station Location for Taxi Cabs

- Decision support system for placing fast charging stations for electric taxi cabs
- Support decision makers to implement an electric taxi cab service
- Trade-of between budget and coverage of charging demand and road network

Charging Station Location for Taxi Cabs

 GPS data from 800 taxis over one year (2014)

Density map start/end locations

- High demand in inner districts
- High probability to start/end trip in high demand areas
- Goal: Locating fast-charging stations in regions with high density and high overall coverage

Charging Station Location for Taxi Cabs

- Select regions for location of fast-charging stations
- Final exact locations require negotiations
- Sum up the charging demand occurring in hexagons with diameter of 1km

Computing optimal regions for installing charging stations

MIP Model

- Maximise covered trips
- Include existing Infrastructure
- Hexagons and their neighbours are covered with configurable weights

 $\begin{aligned} \max \sum_{i \in H} c_i x_i \\ \text{subject to} \qquad & \sum_{i \in H \setminus \overline{H}} y_i \leq R \\ & y_i = 1 & \forall i \in \overline{H} \\ & x_i \leq w_0 y_i + \sum_{j \in N_i} w_1 y_j & \forall i \in H \\ & 0 \leq x_i \leq M & \forall i \in H \\ & y_i \in \{0, 1\} & \forall i \in H \end{aligned}$

CentraleSupélec

Isochrones

CentraleSupélec

Trade-Off

		Percentage of network length $(\%)$		
		Travel time $\leq 5 \min$	Travel time $\leq 8 \min$	
R	w_1	[Min., Max.]	[Min., Max.]	
5	0.5	[9, 10]	[21, 24]	
5	1	[11, 13]	[28, 31]	
10	0.5	[16, 17]	[31, 35]	
10	1	[18, 20]	[38, 43]	
20	0.5	[28, 30]	[49, 53]	
20	1	[30, 35]	[68, 73]	
30	0.5	[40, 42]	[70, 75]	
30	1	[41, 47]	[93, 99]	

Strategic Planning – Fleet Management

- Long-term strategic decisions regarding fleet composition
- Consideration of vehicle pools
- Securing the satisfaction of daily mobility needs
- Incorporation of modal alternatives (e.g. public transport, bicycle)
- Goal: decision making tool supporting fleet managers in strategic planning (once or twice a year)
- Medium term scenarios about development of mobility needs, vehicle characteristics and infrastructure

Strategic Fleet Management

Vehicles

- Existing vehicles
- Vehicles to be acquired
- Acquisition and salvage cost
- Maintenance cost

• Mobility demand

- Representative daily trips per time period (month, quarter)
- Trip cost and emissions depending on vehicle type
- Trip cost and emissions for rented vehicles

Possible alternative modes of transport

A Flexible Modeling Framework

CentraleSupélec

Vehicle Acquisition

Vehicle Assignment

- First stage decisions
- Minimization of time dependent cost and expected distance dependent cost
- Minimization of expected emissions

- Second stage decisions
- Multiple representative single-day scenarios per time period
- Minimization of distance dependent cost
- Minimization of emissions

- Iterative method starting from a solution using the initial fleet
- Buying and reselling decisions of single vehicles in the fleet are evaluated and, if the cost and emissions are smaller than the best solutions already found, they are added as a new candidate for the next iteration

Example: Corridor Vienna-Graz

• Fleet composition (start):

- 7 conventional vehicles
- Solution 1 (final):
 - +4 BEV
 - +4 PHEV

Solution 2 (final):

- +3 BEV
- +2 PHEV

Operational Planning

Problem Definition

Hybrid Heterogeneous Electric Vehicle Routing Problem with Time Windows and recharging stations

3 vehicle classes

- Internal Combustion Engine Vehicles (ICEV)
- Battery Electric Vehicles (BEV)
- Plug-in Hybrid Electric Vehicles (PHEV)

Problem Setting

- single depot (d)
- customers (C)
- recharging stations (F)
- different cost for using energy or fossil fuel

Internal Combustion Engine Vehicles => VRPTW

well researched topic

Battery Electric Vehicles => E-VRPTW(PR)

- visits to additional nodes (recharging stations) for recharging
- partial recharging (PR)
 - no recharge to maximum capacity required
 - additional decision on the amount recharged per visit

• Plug-in Hybrid Electric Vehicles

- visits to additional nodes (recharging stations) for recharging
- partial recharging assumed as well
- decision when to use
 - pure electric engine
 - Internal combustion engine
- Assumption
 - use of electric energy is always better

CentraleSupélec

BEV

PHEV

0.8F/C.

itinerary

itinerary **RS** visits charge in RS

itinerary **RS** visits charge in RS mode selection

12 I.WI

ehorged i

(RS .. recharging station)

CentraleSupélec

BEV

PHEV

itinerary

itinerary **RS** visits charge in RS

itinerary **RS** visits charge in RS mode selection

(RS .. recharging station)

CentraleSupélec

ICEV BEV PHEV charged (12, 13%) charged: 15 kWh 0.8F/C**Top Layer** itinerary itinerary itinerary charged: 15 kWh harged: 12 kWb 0.8F/C.V **RS visits RS visits** charge in RS charge in RS mode selection

Implicit handling of Recharging Stations

Implicit handling of Recharging Stations

Implicit handling of Recharging Stations

CentraleSupélec

- CentraleSupélec
- **Population-based Metaheuristic** (Hybrid Genetic Algorithm)
- Chromosome consists of
 - giant tour without route delimiter (and ٠ recharging stations)
 - full solution (list of complete tours) ٠
- Individual is selected using binary tournament selection
- Penalization
 - load capacity and time-window relaxation ٠

Crossover

- selecting a second
 Individual using Binary
 Tournament as well
- Ordered Crossover (OX) on the giant tours
- using split procedure for decoding

Large Neighbourhood Search

- set of destroy operators
- random removal
- similar (Shaw)
- route removal
- target
- set of repair operators
- greedy insertion
- 2-regret insertion
- random selection (roulettewheel with equal probability)

Heuristic Solver

Heuristic Solver

Set Partitioning

- pre-processed set of all 1-2 customer tours
- store promising complete tours (> 2 customers) throughout the search
- solve set partitioning problem

 Local Search (Education)

- 20pt, 20pt*
- Relocate (1-2), Swap (0 2)
- also used as a heuristic repair step (multiply penalties by 10/100)

Population			
Crossover	LNS	Set-Partitioning	
Local Search			

Experimental Results

Avg. Vehicle Class Usage

fuel cost per distance unit

Highcharts.com

- higher fuel prices => more electric vehicles
- lower fixed cost still a major advantage of ICEVs

Daily fee for entering a controlled area

• London, Singapore, Stockholm, Milan ...

- A City Center (CC) is an Area
- With a finite number of entry points (crossing streets)
- Partitions the set of customers into
 - Inside C₁ (green)
 - Outside *C*₂
- Any path between *u* and *v*

 $u \in C_i, v \in C_j, i \neq j$

consists of an odd number of entry points

• Not necessarily euclidian distances

Types of City Centers Restrictions

• Time restrictions

• e.g. prohibited from 9-17h

Engine

- e.g. no internal combustion engines
- Vehicle type
 - e.g. only small vehicles / bikes
- Penalization
 - one time fee
 - per km cost

Additional Decision: Leg use

• A leg is described by

- from / to node
- all intermediate entry points used
- distance / time / energy needed

Additional Decision: Leg use

• A leg is described by

- from / to node
- all intermediate entry points used
- distance / time / energy needed

Required to travel between inside and outside nodes

Additional Decision: Leg use

• A leg is described by

- from / to node
- all intermediate entry points used
- distance / time / energy needed

- Travel between inside and outside nodes
- Also between outside / outside (inside / inside)
 - shortcut through the city center
 - drive around the center (i.e., avoiding low speed limits)

CentraleSupélec

- Vienna
- **Random node locations**
 - 1 depot ٠
 - 5 recharging stations ٠
 - 116 customers ٠
 - 35 entry points ٠

Properties

- 8h planning horizon ٠
- random demand (1-20 units) ٠
- Time window (0.5-2h) ٠
- Optimistic recharging technology ٠ (16kWh in 0.6h)

Example instance solution

Results

km per type inside/outside the city center

Results

km per type inside/outside the city center

Experiments using artificial data

 Artificial instances based on classical Solomon / Schneider instances

Adaptations from the original values

- orig .. original values of the instance ref ... BEV-L (base fleet configuration)
- distance

orig.battery/orig.consumption
 ref.battery/ref.consumption

- time
 - time window length of the depot node equals 8h
- recharging rate
 - as the original

Fleet-configuration based on
 Fraunhofer study (Plötz et al. 2013)

- small / medium / large sized vehicles
- utility cost also includes driver wage (18€/h)
- battery-size and consumption rate normalized relative to the largest vehicle
- capacity assumed 50/75/100% of the original value

Experiments using artificial data - Results

km per type inside/outside the city center

Experiments using artificial data - Results

km per type inside/outside the city center

Big difference between street graph and artificial instances

- Artificial instances are designed for BEVs
 - Distances scale might be too beneficial for BEVs
 - Recharging rates still artificial
- Vienna city center is rather small
 - Per km cost do not have a large enough impact
 - Additional cost of heavier PHEVs (fixed + variable) are larger than a high daily fee
 - Close depot location favors BEVs instead of PHEVs

Urban Electric Mobility - Decision Making

Main challenge:

• Limited range and long recharging times

Strategic decisions:

- Location of charging stations
- Long-term fleet mix

Operational decisions:

- Vehicle allocation
- Tour planning

Co-authors:

AIT Austrian Institute of Technology: Johannes Asamer, Martin Reinthaler, Markus Straub, Gerhard Hiermann, Pamela Nolz University of Vienna: Richard Hartl, Mario Ruthmair

PUC-Rio – Pontifical Catholic University of Rio de Janeiro: Thibaut Vidal

CONFIDENTIEL

FFG