
From flop to success
in academic software development

Varoquaux
Gaël

“Most lines of code written by programmers
in academia never reach an audience”

G. Varoquaux, March 19th 2015

Technical problems: making software
Marketing problems: unknown users

G Varoquaux 2

“Most lines of code written by programmers
in academia never reach an audience”

G. Varoquaux, March 19th 2015

Technical problems: making software
Marketing problems: unknown users

G Varoquaux 2

This talk [TL;DR]‹

Choose your battles
projects that solve a problem

Win them
software production

‹ Too Long, Didn’t Read

G Varoquaux 3

Please allow me to introduce myself
I’m a man of wealth and taste
I’ve been around for a long, long year

Physicist gone bad
Neuroscience, Machine learning

Worked in a software startup
Enthought: scientific computing
consulting in Python

Coder (done my share of mistake)
Mayavi, scikit-learn, joblib...

Scipy community
Chair of scipy and EuroScipy conferences

Researcher (PI) at INRIA
G Varoquaux 4

Please allow me to introduce myself
I’m a man of wealth and taste
I’ve been around for a long, long yearScikit-learn

Reference machine-learning package
Installed on 1% of the computers running Debian
16 books on Amazon

Mayavi
Reference 3D plotting in Python
Installed on .5% of the computers running Debian

joblib
Backend library
Installed on 1.5% of the computers running Debian

G Varoquaux 5

Software for scientific research

G Varoquaux 6

Reproducible science: enabling falsification
Replicating

A 3rd party redoing the work
Code and data made available

Reproducing
New analysis on different data / code coming to the
same conclusion

Reusing
Applying the approach to a new problem
Let us enable reusable research

Arguments for BSD license
No strings attached
Can tinker with it

G Varoquaux 7

Reproducible science: enabling falsification
Replicating

A 3rd party redoing the work
Code and data made available

Reproducing
New analysis on different data / code coming to the
same conclusion

Reusing
Applying the approach to a new problem
Let us enable reusable research

Arguments for BSD license
No strings attached
Can tinker with it

G Varoquaux 7

The advancement of knowledge
Imagine a circle that contains human knowledge

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
By the time you finish elementary school, you know a little

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
High school takes you a little bit further

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
With a bachelors degree, you gain a speciality

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
A master’s degree deepens this speciality

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
Research papers take you to the edge of human knowledge

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
Once you are at the boundary, you focus

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
You push at the boundary for a few years

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
And one day it yields

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
That dent you’ve made, is called a PhD

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
Of course, the world looks different to you now

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
But don’t forget the big picture

PhD

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux 8

The advancement of knowledge
This is an optimistic view

Biology

Maths

Computer science
Physics

Economy

Literature
History

G Varoquaux 8

The advancement of knowledge
This is an optimistic view

Biology

Maths

Computer science
Physics

Economy

Literature
History

I want to
be there

G Varoquaux 8

Translationnal computational science
Computational science

The use of computers and mathematical models to
address scientific research

Translationnal science
In medecine: bring bench science to medical practice

Translational
computational science?

G Varoquaux 9

Translationnal computational science
Computational science

The use of computers and mathematical models to
address scientific research

Translationnal science
In medecine: bring bench science to medical practice

Translational
computational science?

G Varoquaux 9

Translationnal computational science
Computational science

The use of computers and mathematical models to
address scientific research

Translationnal science
In medecine: bring bench science to medical practice

Translational
computational science?

G Varoquaux 9

Pick a problem to work on
Take the “easy” route

There needs to be a market screeming for the
software (in academia and in industry)

Refine your vision

Pull, not push
Design driven be need

G Varoquaux 10

Having an impact

G Varoquaux 11

Having an impact

G Varoquaux 11

Pick the right battles: viable projects
Project idea

A software implementing:
i) machine learning

and ii) neuroimaging
and iii) a graphical user interface
and iv) 3D plotting

Define project scope and vision
Break down projects by expertise
Don’t solve hard problems
Know the software landscape
Don’t target markets that will not
yield contributors

Need a vision = elevator pitch

Your research (PhD) probably does not qualify
ñ need to cherry-pick contributions

G Varoquaux 12

Pick the right battles: viable projects
Project idea

A software implementing:
i) machine learning

and ii) neuroimaging
and iii) a graphical user interface
and iv) 3D plotting

Define project scope and vision
Break down projects by expertise
Don’t solve hard problems
Know the software landscape
Don’t target markets that will not
yield contributors

Need a vision = elevator pitch

Your research (PhD) probably does not qualify
ñ need to cherry-pick contributions

G Varoquaux 12

Pick the right battles: viable projects
Project idea

A software implementing:
i) machine learning

and ii) neuroimaging
and iii) a graphical user interface
and iv) 3D plotting

Define project scope and vision
Break down projects by expertise
Don’t solve hard problems
Know the software landscape
Don’t target markets that will not
yield contributors

Need a vision = elevator pitch

Your research (PhD) probably does not qualify
ñ need to cherry-pick contributions

G Varoquaux 12

Pick the right battles: viable projects
Project idea

A software implementing:
i) machine learning

and ii) neuroimaging
and iii) a graphical user interface
and iv) 3D plotting

Define project scope and vision
Break down projects by expertise
Don’t solve hard problems
Know the software landscape
Don’t target markets that will not
yield contributors

Need a vision = elevator pitch

Your research (PhD) probably does not qualify
ñ need to cherry-pick contributions

G Varoquaux 12

Open source and community development
Code maintenance too expensive to be alone

scikit-learn „ 300 email/month nipy „ 45 email/month
joblib „ 45 email/month mayavi „ 30 email/month

“Hey Gael, I take it you’re too
busy. That’s okay, I spent a day
trying to install XXX and I think
I’ll succeed myself. Next time
though please don’t ignore my
emails, I really don’t like it. You
can say, ‘sorry, I have no time to
help you.’ Just don’t ignore.”

Your “benefits” come from a fraction of the code
Data loading? Maybe?
Standard algorithms? Nah

Share the common code...
...to avoid dying under code

Code becomes less precious with time
And somebody might contribute features

G Varoquaux 13

Open source and community development
Code maintenance too expensive to be alone

scikit-learn „ 300 email/month nipy „ 45 email/month
joblib „ 45 email/month mayavi „ 30 email/month

Your “benefits” come from a fraction of the code
Data loading? Maybe?
Standard algorithms? Nah

Share the common code...
...to avoid dying under code

Code becomes less precious with time
And somebody might contribute features

G Varoquaux 13

Community development in scikit-learn
Huge feature set:

benefits of a large team
Project growth:

More than 200 contributors
„ 12 core contributors

1 full-time INRIA programmer
from the start

Estimated cost of development: $ 6 millions
COCOMO model,
http://www.ohloh.net/p/scikit-learn

G Varoquaux 14

http://www.ohloh.net/p/scikit-learn

Communities: many eyes makes code fast

L. Buitinck, O. Grisel, A. Joly, G. Louppe, J. Nothman, P. Prettenhofer

G Varoquaux 15

Having an impact

You need a community

G Varoquaux 16

6 steps to a community-driven project

1 Focus on quality

2 Build great docs and examples

3 Use github

4 Limit the technicality of your codebase

5 Releasing and packaging matter

6 Focus on your contributors,
give them credit, decision power

http://www.slideshare.net/GaelVaroquaux/
scikit-learn-dveloppement-communautaire

G Varoquaux 17

http://www.slideshare.net/GaelVaroquaux/scikit-learn-dveloppement-communautaire
http://www.slideshare.net/GaelVaroquaux/scikit-learn-dveloppement-communautaire

What’s in a scientific-computing environment

G Varoquaux 18

The scientific workflow agile

Interaction...
Ñ script...
Ñ module...

ý interaction again...

Consolidation,
progressively

Low tech and short
turn-around times

G Varoquaux 19

Choose your weapons

Python, what else?
Interactive language
Easy to read / write
General purpose

G Varoquaux 20

Choose your weapons

Python, what else?
Interactive language
Easy to read / write
General purpose
Old virtual machine /
compiler
Younger languages
promissing (Julia)

but will they get
adoption beyond science?

G Varoquaux 20

Choose your weapons

Python, what else?
Use numpy arrays

scikit-learn
scikit-image

...

It’s about plugin things
together

G Varoquaux 20

Software architecture for science
“Scriptability” is paramount
In an application: MVC (model, view, controller)

Model
Numerical or
data-processing
core

View
Ouput: graphs,
or files
Must enable
headless use

Controller
Input: dialogs,
or an API
Avoid input as files:
not expressive

Dialogs should never be far from the code
Dialog generation: traits, IPython widgets
Reactive programming:

dialogs modify object, and the model updates
Don’t own the main

In Mayavi: script generation for free

G Varoquaux 21

Software architecture for science
“Scriptability” is paramount
In an application: MVC (model, view, controller)

Model
Numerical or
data-processing
core

View
Ouput: graphs,
or files
Must enable
headless use

Controller
Input: dialogs,
or an API
Avoid input as files:
not expressive

Dialogs should never be far from the code
Dialog generation: traits, IPython widgets
Reactive programming:

dialogs modify object, and the model updates
Don’t own the main

In Mayavi: script generation for free

G Varoquaux 21

Quality is free‹

‹ This is a book, by Philip Crosby
G Varoquaux 22

You need quality
Quality will give you users

Bugs give you bad rap

Quality will give you developers
Contribute to learn and improve

Quality will make your developers happy
People need to be proud of their work

Do less, do better
Goes against the grant-system incentive

G Varoquaux 23

Quality: what & how
Great documentation

Simplify, but don’t dumb down
Focus on what the user is trying to solve

Great APIs
Example-based development
If something is hard to explain, rethink the concepts
Limit the number of different concepts and objects
Consistency, consistency, consistency

Good numerics
Write tests based on mathematical properties
When a user finds an instability, write a new test

Quality enables reuse
Beyond mere reproducibility

G Varoquaux 24

Quality: what & how
Great documentation

Simplify, but don’t dumb down
Focus on what the user is trying to solve

Great APIs
Example-based development
If something is hard to explain, rethink the concepts
Limit the number of different concepts and objects
Consistency, consistency, consistency

Good numerics
Write tests based on mathematical properties
When a user finds an instability, write a new test

Quality enables reuse
Beyond mere reproducibility

G Varoquaux 24

Be productive

G Varoquaux 25

Be productive

“If you spend too much time thinking about a
thing, you’ll never get it done.” — Bruce Lee

G Varoquaux 25

Limited resources
Limited resources are good

Need success in the short term, not the long term

The startup culture: fail fast
Quickly identify non-viable projects

The simpest solution that works is the best

G Varoquaux 26

Short cycles, limited ambitions

Keep coming back to your users
Release early, release often

G Varoquaux 27

Simplicity
Complexity increase superlinearly

[An Experiment on Unit Increase in Problem Complexity,
Woodfield 1979]

25% increase in problem complexity
ñ 100% increase in code complexity

The 80/20 rule
80% of the usecases can be solved
with 20% of the lines of code

Avoid feature creep

Use objects sparingly
Don’t use classes for the sake of it

G Varoquaux 28

Simplicity
Complexity increase superlinearly

[An Experiment on Unit Increase in Problem Complexity,
Woodfield 1979]

25% increase in problem complexity
ñ 100% increase in code complexity

The 80/20 rule
80% of the usecases can be solved
with 20% of the lines of code

Avoid feature creep

Use objects sparingly
Don’t use classes for the sake of it

G Varoquaux 28

Simplicity
Complexity increase superlinearly

[An Experiment on Unit Increase in Problem Complexity,
Woodfield 1979]

25% increase in problem complexity
ñ 100% increase in code complexity

The 80/20 rule
80% of the usecases can be solved
with 20% of the lines of code

Avoid feature creep

Use objects sparingly
Don’t use classes for the sake of it

G Varoquaux 28

Software engineering

G Varoquaux 29

Software development is an industrial process

It’s time to adopt engineering practices

Amateur practices that work for small projects
do not scale

G Varoquaux 30

Software engineering good practices
Coding convention, good naming
Version control

Use git + github
Unit testing
If it’s not tested, it’s broken or soon will be.

Make a package,
with controlled dependencies and compilation

...

G Varoquaux 31

Things we did right (maybe)

G Varoquaux 32

Mayavi: 3D visualization in Python
Success factors

Building upon VTK Great power
Component model (UI)
Internals open to the world

ñ from interaction to scripting

Limiting factors
Building upon VTK A lot of complexity
Codebase too complex and object-oriented

(bound to VTK)
Users of GUIs do not turn into developers
Composition is an API killer

G Varoquaux 33

Mayavi: 3D visualization in Python
Success factors

Building upon VTK Great power
Component model (UI)
Internals open to the world

ñ from interaction to scripting

Limiting factors
Building upon VTK A lot of complexity
Codebase too complex and object-oriented

(bound to VTK)
Users of GUIs do not turn into developers
Composition is an API killer

G Varoquaux 33

joblib: computational workflow patterns

Parallel for loop
>>> from joblib import Parallel, delayed
>>> Parallel(n jobs=2)(delayed(sqrt)(i**2)
... for i in range(8))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
On-demand dispatch to ease memory consumption
Threading and processes backends

G Varoquaux 34

joblib: computational workflow patterns

Parallel for loop
>>> from joblib import Parallel, delayed
>>> Parallel(n jobs=2)(delayed(sqrt)(i**2)
... for i in range(8))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

Memoize pattern
mem = joblib.Memory(cachedir=’.’)
g = mem.cache(f)
b = g(a) # computes a using f
c = g(a) # retrieves results from store

G Varoquaux 34

joblib: computational workflow patterns

Success factors
Simplicity of use
Patterns we really, really need (pull not push)

G Varoquaux 35

joblib: computational workflow patterns

Success factors
Simplicity of use
Patterns we really, really need (pull not push)

Limiting factor
Vision of the project unclear
Positioning with regards to landscape unclear

(parallel computing world fuzzy)
Tricky code inside

G Varoquaux 35

scikit-learn: machine learning in Python

Success factors
Right project vision

Machine learning without learning the machinery
Black box that can be opened
Right trade-off between ”just works” and versatility

(think Apple vs Linux)
We’re not going to solve all the problems for you

I don’t solve hard problems
Feature-engineering, domain-specific cases...

Python is a programming language. Use it.

Cover all the 80% usecases in one package

G Varoquaux 36

scikit-learn: machine learning in Python

Success factors
Right project vision
High-level programming

- Optimize algorithmes, not for loops
- Know perfectly Numpy and scipy
- Use Cython, quad not C/C++

G Varoquaux 36

scikit-learn: machine learning in Python

Success factors
Right project vision
High-level programming
Good API design

- separate data from operations

03
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

2003
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

20

03
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

2003
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

20

03
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

2003
87

87
94

79
79

27

01
79

07
52

70
15

78

94
07

17
46

12
47

97

54
97

07
18

71
78

87

13
65

34
90

49
51

90

74
75

42
65

35
80

98

48
72

15
46

34
90

84

90
34

56
73

24
56

14

78
95

71
87

74
56

20

G Varoquaux 36

scikit-learn: machine learning in Python

Success factors
Right project vision
High-level programming
Good API design

- separate data from operations
- Object API exposes a data-processing language

fit, predict, transform, score, partial fit

- Instantiated without data but with all parameters

G Varoquaux 36

scikit-learn: machine learning in Python

Success factors
Right project vision
High-level programming
Good API design
Great community

- Github + code review

G Varoquaux 36

scikit-learn: machine learning in Python

Success factors
Right project vision
High-level programming
Good API design
Great community
Great documentation

G Varoquaux 36

scikit-learn: machine learning in Python

Success factors
Right project vision
High-level programming
Good API design
Great community
Great documentation

Limiting factors
Tricky numerical code
Our own success ñ huge volume

G Varoquaux 36

@GaelVaroquaux

From flop to success in academic software
1 Choose the project well

Not all battles can be fought
Make sure that there is a market

Don’t solve (too many) hard problems

2 Reach a community

3 Make good software

@GaelVaroquaux

From flop to success in academic software
1 Choose the project well

2 Reach a community
Users: market your project

Developers: community-driven development

3 Make good software

@GaelVaroquaux

From flop to success in academic software
1 Choose the project well

2 Reach a community

3 Make good software
With quality, software engineering

Usability matters

@GaelVaroquaux

From flop to success in academic software
1 Choose the project well

2 Reach a community

3 Make good software

