From flop to success
in academic software development

Gael 7
Varoquaux breeia—

“Most lines of code written by programmers
in academia never reach an audience”
G. Varoquaux, March 19th 2015

G Varoquaux

“Most lines of code written by programmers
in academia never reach an audience”
G. Varoquaux, March 19th 2015

m Technical problems: making software
m Marketing problems: unknown users

G Varoquaux

This talk [TL;DR]*

m Choose your battles
projects that solve a problem

m Win them
software production

* Too Long, Didn't Read

G Varoquaux

Please allow me to introduce myself
I'm a man of wealth and taste

I've been around for a long, long year

m Physicist gone bad

Neuroscience, Machine learning

mWorked in a software startup
Enthought: scientific computlng s
consulting in Python

m Coder (done my share of mistal@
Mayavi, scikit-learn, joblib...

= Scipy community

m Researcher (PI) at INRIA
G Varoquaux 4

Please allow me to introduce myself
I'm a man of wealth and taste
I've been around for a long, long year

= Scikit-learn
Reference machine-learning package
Installed on 1% of the computers running;

Debian
16 books on Amazon ;

= Mayavi i
Reference 3D plotting in:
Installed on .5% of the c

leblib
Backend library
Installed on 1.5% of the computer

G Varoquaux 5

Software for scientific research

G Varoquaux

Reproducible science: enabling falsification
Replicating
A 3rd party redoing the work
Code and data made available

Reproducing
New analysis on different data / code coming to the
same conclusion

Reusing

Applying the approach to a new problem "
Let us enable reusable research ' ‘

-y

G Varoquaux 7

Reproducible science: enabling falsification
Replicating
A 3rd party redoing the work
Code and data made available

Reproducing
New analysis on different data / code coming to the
same conclysi

Arguments for BSD license
Reusing No strings attached
AUEDUTUERE Can tinker with it
Let us enable reusable research '

-

G Varoquaux

The advancement of knowledge

Imagine a circle that contains human knowledge

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

By the time you finish elementary school, you know a little

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge
High school takes you a little bit further

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

With a bachelors degree, you gain a speciality

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

A master’s degree deepens this speciality

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

Research papers take you to the edge of human knowledge

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

Once you are at the boundary, you focus

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

You push at the boundary for a few years

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

And one day it yields

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge
That dent you've made, is called a PhD

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

Of course, the world looks different to you now

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge
But don't forget the big picture

—PhD

Courtesy of Matt Might, via Stefan van der Waalt
G Varoquaux

The advancement of knowledge

This is an optimistic view

—Physics
—Computer science

R4 Maths
/
/
1
I 1
I [
1 1
\]
\ /' ~—Biology
AN ,2/ ~—Economy
~ ’
‘h—_—” \
History
Literature

G Varoquaux

The advancement of knowledge

This is an optimistic view

—Physics
—Computer science

’ Maths
/7 | want to
" be there
I 1
I 1
| I
]
\ / .
N J ~—Biology
AN ,2/ ~—Economy
~ ~ ”/
~ History
Literature

G Varoquaux

Translationnal computational science

Computational science
The use of computers and mathematical models to
address scientific research

G Varoquaux

Translationnal computational science

Computational science
The use of computers and mathematical models to
address scientific research

Translationnal science
In medecine: bring bench science to medical practice

G Varoquaux

Translationnal computational science
Computational science

The use of computers and mathematical models to
address scientific research

Translationnal science

In medecine: bring bench science to medical practice

1011001
1101010

.)1011001
Translational
| computational science?

G Varoquaux

Pick a problem to work on

Take the “easy” route
There needs to be a market screeming for the
software (in academia and in industry)

Refine your vision

Pull, not push
Design driven be need

G Varoquaux

10

G Varoquaux

Having an impact

11

Having an impact

11

G Varoquaux

Pick the right battles: viable projects

Project idea _ _
A software implementing:

i) machine learning
and i) neuroimaging
and iii) a graphical user interface
and iv) 3D plotting

G Varoquaux 12

Pick the right battles: viable projects |

Project idea _ _
A software implementing:

i) machine learning
and i) neuroimaging
and iii) a graphical user interface
and iv) 3D plotting

Pick the right battles: viable projects

G Varoquaux

Define project scope and vision

m Break down projects by expertise
m Don’t solve hard problems

m Know the software landscape

m Don't target markets that will not

yield contributors
Need a vision = elevator pitch

12

Pick the right battles: viable projects

Define project scope and vision
m Break down projects by expertise

m Don’t solve hard problems
m Know the software landscape

m Don't target markets that will not
yield contributors
Need a vision = elevator pitch

Your research (PhD) probably does not quallny
= need to cherry-pick contrlbutlons

G Varoquaux

Open source and community development

Code maintenance too expensive to be alone
scikit-learn ~ 300 email/month nipy ~ 45email /month
joblib ~ 45 email /month mayavi ~ 30 email /month

“Hey Gael, | take it you're too
busy. That’s okay, | spent a day

m trying to install XXX and | think
I'll succeed myself. Next time

Inbox (53,064) though please don’t ignore my

Starred . . .
emails, | really don’t like it. You

can say, ‘sorry, | have no time to
help you. Just don’t ignore.”

G Varoquaux

Open source and community development

Code maintenance too expensive to be alone
scikit-learn ~ 300 email/month nipy ~ 45email/month
joblib ~ 45 email /month mayavi ~ 30 email /month

Your “benefits” come from a fraction of the code
m Data loading? Maybe?
m Standard algorithms? Nah

Share the common code... e
...to avoid dying under code ==

Code becomes less precious with time
And somebody might contribute features «

G Varoquaux

Community development in scikit-learn

Huge fe_ature set: (. Code @ Comments @9 Blanksj 500k
benefits of a large team

Project growth:

2010 2011 2012 2013

m More than 200 contributors

m ~ 12 core contributors

m1 full-time INRIA programmer
from the start

Estimated cost of development: $ 6 millions
COCOMO model,
http://www.ohloh.net/p/scikit-learn

G Varoquaux

http://www.ohloh.net/p/scikit-learn

Communities: many eyes makes code fast

Gilles Louppe
E il Speed improvement from 0.13 to 0.15-git of Random Forests in Scikit-Learn:

- 500

m0.131

0.14.1
0.15-git

L. Buitinck, O. Grisel, A. Joly, G. Louppe, J. Nothman, P. Prettenhofer

G Varoquaux 15

Having an impact

You need a community

| gidd § pitd 1

G Varoquaux

16

6 steps to a community-driven project

1 Focus on quality

2 Build great docs and examples

3 Use github

4 Limit the technicality of your codebase
5 Releasing and packaging matter

% Focus on your contributors,

give them credit, decision power w
http://www.slideshare.net/GaelVaroquaux/ @

scikit-learn-dveloppement-communautaire
G Varoquaux

http://www.slideshare.net/GaelVaroquaux/scikit-learn-dveloppement-communautaire
http://www.slideshare.net/GaelVaroquaux/scikit-learn-dveloppement-communautaire

What's in a scientific-computing environment

G Varoquaux

18

The scientific workflow

m Interaction..
— script..
— module..
D interaction again..

m Consolidation,
progressively

mLow tech and short
turn-around times

G Varoquaux

Choose your weapons

Python, what else? _
m Interactive language

m Easy to read / write
m General purpose

G Varoquaux j 20

Choose your weapons

Python, what else? _
m Interactive language

m Easy to read / write
— m General purpose
ZoN Old virtual machine /
: compiler

Younger languages
promissing (Julia)
but will they get
adoption beyond science?

20

»

G Varoquaux

Choose your weapons
Python, what else?
Use numpy arrays

mscikit-learn
Y, mscikit-image

It's about plugin things
— together

G Varoquaux j 20

Software architecture for science

m “Scriptability” is paramount

mIn an application: MVC (model, view, controller)

Model View Controller
Numerical or fll Ouput: graphs, l Input: dialogs,

data-processing [l or files or an API

core Must enable [l Avoid input as files:
headless use not expressive

m Dialogs should never be far from the code
Dialog generation: traits, IPython widgets

m Reactive programming:
dialogs modify object, and the model updates

Don’t own the main
G Varoquaux

21

Software architecture for science

m “Scriptability” is paramount

mIn an application: MVC (model, view, controller)

Model View Controller
Numerical or fll Ouput: graphs, l Input: dialogs,

data-processing [l or files or an API

core Must enable [l Avoid input as files:
headless use not expressive

m Dialogs should never be far from the code

BJEIS |n Mayavi: script generation for free

m Reactive programming;:
dialogs modify object, and the model updates

Don’t own the main
G Varoquaux 21

Quality is free*

* This is a book, by Philip Crosby
G Varoquaux 22

You need quality

m Quality will give you users
Bugs give you bad rap

m Quality will give you developers
Contribute to learn and improve

m Quality will make your developers happy
People need to be proud of their work

Do less, do better

Goes against the grant-system incentive

G Varoquaux 23

Quality: what & how

Great documentation
m Simplify, but don’'t dumb down
m Focus on what the user is trying to solve

Great APlIs

m Example-based development

m If something is hard to explain, rethink the concepts
m Limit the number of different concepts and objects
m Consistency, consistency, consistency

Good numerics
m Write tests based on mathematical properties
mWhen a user finds an instability, write a new test

G Varoquaux

Quality: what & how
Great documentation

m Simplify, but don’'t dumb down
m Focus on what the user is trying to solve

Great APlIs
m Example-based development
EGE: Quality enables reuse JQiEie

JRlyiAdl Beyond mere reproducibility SIS
m Consistency, consistency, consistency

Good numerics
m Write tests based on mathematical properties
mWhen a user finds an instability, write a new test

G Varoquaux

G Varoquaux

Be productive

25

Be productive

“If you spend too much time thinking about a
thing, you'll never get it done.”

— Bruce Lee

G Varoquaux

25

Limited resources

Limited resources are good
m Need success in the short term, not the long term

m The startup culture: fail fast
Quickly identify non-viable projects

m The simpest solution that works is the best

G Varoquaux

Short cycles, limited ambitions

m Keep coming back to your users
m Release early, release often

G Varoquaux

27

Simplicity
Complexity increase superlinearly
[An Experiment on Unit Increase in Problem Complexity,
Woodfield 1979]
25% increase in problem complexity
= 100% increase in code complexity

G Varoquaux 28

Simplicity
Complexity increase superlinearly

[An Experiment on Unit Increase in Problem Complexity,
Woodfield 1979]

25% increase in problem complexity
= 100% increase in code complexity

The 80/20 rule
80% of the usecases can be solved

with 20% of the lines of code

G Varoquaux

28

Simplicity
Complexity increase superlinearly

[An Experiment on Unit Increase in Problem Complexity,
Woodfield 1979]

25% increase in problem complexity
= 100% increase in code complexity

The 80/20 rule
80% of the usecases can be solved

with 20% of the lines of code
Avoid feature creep

Use objects sparingly
Don't use classes for the sake of it

G Varoquaux

28

G Varoquaux

Software engineering

29

Software development is an industrial process
It's time to adopt engineering practices

Amateur practices that work for small projects
do not scale

e oi -f "'H“' ﬂ‘ Rt b
’.’ﬂ‘”w-_uau-*t—m.lm oo AR

G Varoq'lahﬁq r]"" | 4l ‘l!" N m I

30

Software engineering good practices
m Coding convention, good naming

m Version control
Use git + github

m Unit testing
If it's not tested, it's broken or soon will be.

m Make a package,
with controlled dependencies and compilation

, a"'“&"""*”“ -‘m E ' '
G Varoq'na”ﬁ{ p‘ ""’ r "!‘ I m ""| Bil

G Varoquaux

Things we did right (maybe)

32

Mayavi: 3D visualization in Python
Success factors
m Building upon VTK
m Component model (Ul)
m Internals open to the world

= from interaction to scripting

Great power

Limiting factors
m Building upon VTK A lot of complexity
m Codebase too complex and object-oriented

(bound to VTK)
m Users of GUIs do not turn into developers

m Composition is an API killer

G Varoquaux \’ 33

Mayavi: 3D visualization in Python
Success factors
m Building upon VTK
m Component model (Ul)
m Internals open to the world

= from interaction to scripting

Great power

Limiting factors
m Building upon VTK A lot of complexity
m Codebase too complex and object-oriented

(bound to VTK)
m Users of GUIs do not turn into developers

m Composition is an API killer

G Varoquaux \’ 33

joblib: computational workflow patterns

Parallel for loop

>>> from joblib import Parallel, delayed

>>> Parallel(n_jobs=2) (delayed(sqrt) (i**2)
for i in range(8))

[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]
m On-demand dispatch to ease memory consumption
m Threading and processes backends

G'_Varoquaux

34

joblib: computational workflow patterns

Parallel for loop

>>> from joblib import Parallel, delayed

>>> Parallel(n_jobs=2) (delayed(sqrt) (i**2)
for i in range(8))

(0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

Memoize pattern

mem = joblib.Memory(cachedir=’.")
g = mem.cache(f)

b = g(a) # computes a using f
C =

g(a) # retrieves results from store

G'_Varoquaux

34

joblib: computational workflow patterns

Success factors
m Simplicity of use
m Patterns we really, really need (pull not push)

G:_Varoqua.ux 35

joblib: computational workflow patterns

Success factors
m Simplicity of use
m Patterns we really, really need (pull not push)

Limiting factor

m Vision of the project unclear

m Positioning with regards to landscape unclear
(parallel computing world fuzzy)

m Tricky code inside

_|||1||”1||]

Ll ||

G'_Varoquaux 35

scikit-learn: machine learning in Python

Success factors
m Right project vision
Machine learning without learning the machinery
Black box that can be opened
Right trade-off between "just works” and versatility
(think Apple vs Linux)

We're not going to solve all the problems for you
| don't solve hard problems

Feature-engineering, domain-specific cases...
Python is a programming language. Use it.

Cover all the 80% usecases in one pack

G Varoquaux

scikit-learn: machine learning in Python

Success factors
m Right project vision

m High-level programming
- Optimize algorithmes, not for loops

- Know perfectly Numpy and scipy
- Use Cython, quad not C/C++

G Varoquaux

scikit-learn: machine learning in Python

Success factors

m Right project vision

m High-level programming

um Good API design
- separate data from operations

G Varoquaux

scikit-learn: machine learning in Python

Success factors
m Right project vision
m High-level programming

m Good API design
- separate data from operations

- Object API exposes a data-processing language
e fit, predict, transform, score, partial_fit

- Instantiated without data but with all parameters

G Varoquaux ‘

scikit-learn: machine learning in Python

Success factors

m Right project vision

m High-level programming
m Good API design

m Great community
- Github + code review

G Varoquaux

scikit-learn: machine learning in Python

Success factors

m Right project vision

m High-level programming
m Good API design

m Great community

m Great documentation

G Varoquaux

scikit-learn: machine learning in Python

Success factors

m Right project vision

m High-level programming
m Good API design

m Great community

m Great documentation

Limiting factors

m Tricky numerical code

m Our own success = huge volume

G Varoquaux ‘

From flop to success in academic software

1 Choose the project well
Not all battles can be fought
Make sure that there is a market
Don't solve (too many) hard problems

o
av

U

M @GaelVaroquaux

From flop to success in academic software

1 Choose the project well

2 Reach a community
Users: market your project
Developers: community-driven development

V) & ¢
’@GaelVaroquaux

From flop to success in academic software

1 Choose the project well
2 Reach a community

3 Make good software

With quality, software engineering
Usability matters

’@GaelVaroquaux

From flop to success in academic software

1 Choose the project well
2 Reach a community

3 Make good software

’@GaelVaroquaux

