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My line of reasoning

(Weighted) graphs are appropriate tools to model data
1. Computers can “reason by analogy”

un/supervised ML: clustering, artificial neural networks. . .

2. Clustering on vectors allows more flexibility
ANNs need vector input

3. Need to embed (weighted) graphs into Euclidean spaces
4. High dimensions make clustering expensive/unstable
5. Lower-dimensional projections improve efficiency/stability
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Clustering
“Machine intelligence”:

analogy based on proximity
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Subsection 1

Clustering in graphs

5 / 91



Modularity clustering
“Modularity is the fraction of the edges that fall within a cluster minus the
expected fraction if edges were distributed at random.”

I “at random” = random graphs over same degree sequence
I degree sequence = (k1, . . . , kn)where ki = |N(i)|
I “expected” = all possible “half-edge” recombinations

I expected edges between u, v: kukv/(2m)wherem = |E|
I mod(u, v) = (Auv − kukv/(2m))

I mod(G) =
∑

{u,v}∈E
mod(u, v)xuv

xuv = 1 if u, v in the same cluster and 0 otherwise

I “Natural extension” to weighted graphs: ku =
∑
v Auv ,m =

∑
uv Auv

[Girvan &Newman 2002]
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Use modularity to define clustering
I What is the “best clustering”?

I Maximize discrepancy between actual and expected
“as far away as possible from average”

max
∑

{u,v}∈E
mod(u, v)xuv

∀u ∈ V, v ∈ V xuv ∈ {0, 1}


I Issue: trivial solution x = 1 “one big cluster”

I Idea: treat clusters as cliques
then clique partitioning constraints for transitivity

∀i < j < k xij + xjk − xik ≤ 1

∀i < j < k xij − xjk + xik ≤ 1

∀i < j < k − xij + xjk + xik ≤ 1

∀{i, j} 6∈ E xij = 0

if i, j ∈ C and j, k ∈ C then i, k ∈ C [Aloise et al. 2010]
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Maximizing the modularity of a graph

I Modularity MaximizationMP is a MILP

I MILP is NP-hard but ∃ technologically advanced solvers

I Otherwise, use (fast) heuristics

I Unlike other methods, this decides the number of
clusters

[Cafieri et al. 2014]
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Subsection 2

Clustering in Euclidean spaces
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Minimum sum-of-squares clustering
I MSSC, a.k.a. the k-means problem (k =#clusters)

I Given points p1, . . . , pn ∈ Rm, find clustersC1, . . . , Ck

min
∑
j≤k

∑
i∈Cj

‖pi − centroid(Cj)‖22

where centroid(Cj) = 1
|Cj |

∑
i∈Cj

pi

I k-means alg.: given initial clusteringC1, . . . , Ck

vars xij = 1 if i assigned to j (0 othw)
1: ∀j ≤ k compute yj = centroid(Cj)
2: ∀i ≤ n, j ≤ k if yj is the closest centroid to pi let xij = 1 else 0
3: ∀j ≤ k updateCj ← {pi | xij = 1 ∧ i ≤ n}
4: repeat until stability

note that k is given (unlike modularity clustering)

[MacQueen 1967, Aloise et al. 2012]
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MP formulation

min
x,y,s

∑
i≤n

∑
j≤k
‖pi − yj‖22 xij

∀j ≤ k 1
sj

∑
i≤n

pixij = yj

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k
∑
i≤n

xij = sj

∀j ≤ k yj ∈ Rm

x ∈ {0, 1}nk
s ∈ Nk


(MSSC)

MINLP: nonconvex terms; continuous, binary and integer variables
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Reformulation
The (MSSC) formulation has the same optima as:

min
x,y,P

∑
i≤n

∑
j≤k

Pij xij

∀i ≤ n, j ≤ k ‖pi − yj‖22 ≤ Pij
∀j ≤ k

∑
i≤n

pixij =
∑
i≤n

yjxij

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ ([min
i≤n

pih,max
i≤n

pih] | h ≤ k)

x ∈ {0, 1}nk
P ∈ [0, PU ]nk


I The only nonconvexities are

products of binary by continuous bounded variables
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Products of binary and continuous vars.
I Suppose term xy appears in a formulation
I Assume x ∈ {0, 1} and y ∈ [0, 1] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [0, 1]

y − (1− x) ≤ z ≤ y + (1− x)

−x ≤ z ≤ x

I ⇒ Everything’s linear now!

[Fortet 1959]
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Products of binary and continuous vars.
I Suppose term xy appears in a formulation

I Assume x ∈ {0, 1} and y ∈ [yL, yU ] is bounded
I means “either z = 0 or z = y”
I Replace xy by a new variable z
I Adjoin the following constraints:

z ∈ [min(yL, 0),max(yU , 0)]

y − (1− x) max(|yL|, |yU |) ≤ z ≤ y + (1− x) max(|yL|, |yU |)
−xmax(|yL|, |yU |) ≤ z ≤ xmax(|yL|, |yU |)

I ⇒ Everything’s linear now!

[L. et al. 2009]
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MSSC is a convex MINLP
min

x,y,P,χ,ξ

∑
i≤n

∑
j≤k

χij

∀i ≤ n, j ≤ k 0 ≤ χij ≤ Pij
∀i ≤ n, j ≤ qquadPij − (1− xij)PU ≤ χij ≤ xijPU

∀i ≤ n, j ≤ k ‖pi − yj‖22 ≤ Pij ⇐ convex

∀j ≤ k
∑
i≤n

pixij =
∑
i≤n

ξij

∀i ≤ n, j ≤ k yj − (1− xij)max(|yL|, |yU |) ≤ ξij ≤ yj + (1− xij)max(|yL|, |yU |)

∀i ≤ n, j ≤ k − xij max(|yL|, |yU |) ≤ ξij ≤ xij max(|yL|, |yU |)

∀i ≤ n
∑
j≤k

xij = 1

∀j ≤ k yj ∈ [yL, yU ]

x ∈ {0, 1}nk

P ∈ [0, PU ]nk

χ ∈ [0, PU ]nk

∀i ≤ n, j ≤ k ξij ∈ [min(yL, 0),max(yU , 0)]

yj , ξij , yL, yU are vectors inRm
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Solving the MSSC

I k-means
I heuristic (optimum not guaranteed)
I fast, well-known, lots of analyses
I scales reasonably well
I implemented in practically all languages

I convex MINLP
I exact (guaranteed global optima)
I reasonably fast only for small sizes
I scales exponentially
I Solvers: KNITRO (commercial), Bonmin (free)

need an MP language interpreter (AMPL)
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Euclidean Distance Geometry
Embedding weighted graphs in `2
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Distance Geometry Problem (DGP)
Given K ∈ N and G = (V,E, d) with d : E → R+,
find x : V → RK s.t.

∀{i, j} ∈ E ‖xi − xj‖22 = d2ij

Given a weighted graph , draw it so edges are drawn as segments

with lengths=weights

[Cayley 1841, Menger 1928, Schoenberg 1935, Yemini 1978]

19 / 91



Subsection 1

Applications
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Some applications

I clock synchronization (K = 1)
I sensor network localization (K = 2)
I molecular structure from distance data (K = 3)
I autonomous underwater vehicles (K = 3)
I distance matrix completion (whateverK)

21 / 91



Clock synchronization

From [Singer,Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial
measurements of their time di�erences

I K = 1

I V : timestamps
I {u, v} ∈ E if known time difference between u, v
I d: values of the time differences

Used in time synchronization of distributed networks
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Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of
geographically distributed objects using measurements of the

distances between some object pairs

I K = 2

I V : (mobile) sensors
I {u, v} ∈ E iff distance between u, v is measured
I d: distance values

Used whenever GPS not viable (e.g. underwater)
duv ∝∼ battery consumption in P2P communication betw. u, v
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Molecular structure from distance data
From [L. et al., SIAM Rev., 2014]

I K = 3

I V : atoms
I {u, v} ∈ E iff distance between u, v is known
I d: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid)
Covalent bond lengths and angles known precisely
Distances/ 5.5measured approximately by NMR
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Subsection 2

Computational complexity
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Complexity class

I DGP1 with d : E → Q+ is inNP
I if instance YES ∃ realization x ∈ Rn×1

I if some component xi 6∈ Q translate x so xi ∈ Q
I consider some other xj
I let ` = (length sh. path p : i→ j) =

∑
{u,v}∈p

duv ∈ Q

I then xj = xi ± `→ xj ∈ Q
I ⇒ verification of

∀{i, j} ∈ E |xi − xj | = dij

in polytime
I DGPK may not be inNP forK > 1

don’t know how to verify ‖xi − xj‖2 = dij for x 6∈ QnK
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Hardness

I DGP1 isNP-hard by reduction from Partition
Given a = (a1, . . . , an) ∈ Nn, ∃ I ⊆ {1, . . . , n} s.t.

∑
i∈I

ai =
∑
i6∈I

ai ?

I a −→ cycleC
V (C) = {1, . . . , n},E(C) = {{1, 2}, . . . , {n, 1}}

I For i < n let di,i+1 = ai and dn,n+1 = dn1 = an
I E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

I Argue DGP1 is YES iff Partition is YES
choose xi right/left of xi−1⇔ i ∈ I or 6∈ I

[Saxe, 1979]
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Subsection 3

Number of solutions modulo congruences
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Examples
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Rigidity, flexibility and |X|

I infeasible⇔ |X| = 0

I rigid graph⇔ |X| < ℵ0

I globally rigid graph⇔ |X| = 1

I flexible graph⇔ |X| = 2ℵ0

I DMDGP graphs⇔ |X| a power of 2

I |X| = ℵ0: impossible byMilnor’s theorem

[Milnor 1964, L. et al. 2013]
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Milnor’s theorem implies |X| 6= ℵ0

I System S of polynomial equations of degree 2

∀i ≤ m pi(x1, . . . , xnK) = 0

I LetX be the set of x ∈ RnK satisfying S

I Number of connected components ofX isO(3nK)
[Milnor 1964]

I If |X| is countably∞ thenG cannot be flexible
⇒ incongruent elts of X are separate connected components
⇒ byMilnor’s theorem, there’s finitely many of them
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Subsection 4

MP based solution methods
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Unconstrained Global Optimization

min
x

∑
{u,v}∈E

(‖xu − xv‖22 − d2uv)
2 (1)

Globally optimal obj. fun. value of (1) is 0 iff x solves DGP

Computational experiments in [L. et al., 2006]:
I GO solvers from 10 years ago

I randomly generated protein data:≤ 50 atoms

I cubic crystallographic grids:≤ 64 atoms
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Constrained global optimization

I minx
∑

{u,v}∈E
|‖xu − xv‖22 − d2uv| exactly reformulates DGP

I Relax objective f to concave part, remove constant term,
rewrite min−f as max f

I Reformulate convex part of obj. fun. to convex constraints
I Exact reformulation

maxx
∑

{u,v}∈E
‖xu − xv‖22

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2uv

}
(2)

[Mencarelli et al. 2017]
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Linearization

∀{i, j} ∈ E ‖xi − xj‖22 = d2ij

⇒ ∀{i, j} ∈ E ‖xi‖22 + ‖xj‖22 − 2xi · xj = d2ij

⇒
{
∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij

X = x x>

X = x x> ⇔ ∀i, j Xij = xixj
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Relaxation

X = x x>

⇒ X − x x> = 0

(relax) ⇒ X − x x> � 0

Schur(X, x) =

(
IK x>

x X

)
� 0

If x does not appear elsewhere⇒ get rid of it (e.g. choose x = 0):

replace Schur(X, x) � 0 by X � 0

Reason for this “weird” relaxation: there are efficient solvers for Semidefinite Programming (SDP)
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SDP relaxation

minF •X
∀{i, j} ∈ E Xii + Xjj − 2Xij = d2ij

X � 0

How do we choose F ?

I For protein conformation:

max
∑
{i,j}∈E

(Xii + Xjj − 2Xij)

with = changed to≤ in constraints (ormin and≥) [Dias & L. 2016]
“push-and-pull” the realization

37 / 91



When SDP solvers hit their size limit

I SDP solver: technological bottleneck
I How can we best use an LP solver?
I Diagonally Dominant (DD) matrices are PSD
I Not vice versa: inner approximate PSD cone Y � 0

I Idea by A.A. Ahmadi and co-authors

[Ahmadi &Majumdar 2014, Ahmadi &Hall 2015]
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Diagonally dominant matrices

n× nmatrixX is DD if

∀i ≤ n Xii ≥
∑
j 6=i

|Xij|.

E.g.


1 0.1 −0.2 0 0.04 0
0.1 1 −0.05 0.1 0 0
−0.2 −0.05 1 0.1 0.01 0
0 0.1 0.1 1 0.2 0.3

0.04 0 0.01 0.2 1 −0.3
0 0 0 0.3 −0.3 1
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DDLinearization

∀i ≤ n Xii ≥
∑
j 6=i

|Xij| (∗)

I introduce “sandwiching” variable T
I write |X| as T
I add constraints−T ≤ X ≤ T

I by≥ constraint sense, write (∗) as

Xii ≥
∑
j 6=i

Tij
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DD Programming (DDP) formulation

min
∑

{i,j}∈E
(Xii + Xjj − 2Xij)

∀{i, j} ∈ E Xii + Xjj − 2Xij ≥ d2ij
∀i ≤ n

∑
j≤n
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T
T ≥ 0


This is just an LP, much more efficient to solve than SDP!

[Dias & L., 2016]
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Distance resolution limit
Clustering in high dimensions is

unstable
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Nearest Neighbours
k-Nearest Neighbours (k-NN).Given:

I k ∈ N
I a distance function d : Rn × Rn → R+

I a set X ⊂ Rn

I a point z ∈ Rn r X ,

find the subset Y ⊂ X such that:

(a) |Y| = k

(b) ∀y ∈ Y, x ∈ X r Y (d(z, y) ≤ d(z, x))

I basic problem in data science
I pattern recognition, computational geometry, machine learning, data compression, robotics,

recommender systems, information retrieval, natural language processing and more

I Example: Used in Step 2 of k-means:
assign points to closest centroid

the two ks in k-means and k-NN are not the same

[Cover &Hart 1967]
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With random variables

I Consider 1-NN
I Let ` = |X |
I Distance function family
{dm : Rn × Rn → R+}m

I For eachm:
I random variableZm with some distribution overRn
I for i ≤ `, random variableXm

i with some distrib. overRn
I Xm

i iid w.r.t. i,Zm independent of allXm
i

I Dm
min = min

i≤`
dm(Zm, Xm

i )

I Dm
max = max

i≤`
dm(Zm, Xm

i )
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Distance Instability Theorem
I Let p > 0 be a constant
I If

∃i ≤ ` (dm(Zm, Xm
i ))p converges as m→∞

then, for any ε > 0,

closest and furthest point are at about the same distance

Note “∃i” suffices since ∀mwe haveXm
i iid w.r.t. i

Meaning ofm: e.g. dimension

[Beyer et al. 1999]
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Distance Instability Theorem
I Let p > 0 be a constant
I If

∃i ≤ ` lim
m→∞

Var((dm(Zm, Xm
i ))p) = 0

then, for any ε > 0,

lim
m→∞

P(Dm
max ≤ (1 + ε)Dm

min) = 1

Note “∃i” suffices since ∀mwe haveXm
i iid w.r.t. i

Meaning ofm: e.g. dimension

[Beyer et al. 1999]
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Subsection 1

When to start worrying
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When the limit applies

I iid random variables from any distribution
I Particular forms of correlation

e.g.Ui ∼ Uniform(0,
√
i),X1 = U1,Xi = Ui + (Xi−1/2) for i > 1

I Variance tending to zero
e.g.Xi ∼ N(0, 1/i)

I Discrete uniform distribution onm-dimensional hypercube
for both data and query

I Computational experiments: instability already with n > 15
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. . . and when it doesn’t

I Complete linear dependence on all distributions
can be reduced to NN in 1D

I Exact and approximate matching
query point = (or ≈) data point

I Query point in a well-separated cluster in data
I Implicitly low dimensionality

project; but NN must be stable in lower dim.
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Approximate projections
Losing dimensions but not too much

information
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Lower dimensional (approximate) embeddings

I Given distance matrix, find approximate Euclidean embedding
I Application: visualize a metric space

e.g. embed genealogy tree in R3 (some errors allowed)
I For visualization purposes,K ∈ {1, 2, 3}

for other purposes, K < n

Classical methods
I Multi-Dimensional Scaling (MDS)
I Principal Component Analysis (PCA)

53 / 91



Subsection 1

Classic Multidimensional Scaling
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Gram in function of EDM

I x = (x1, . . . , xn) ⊆ RK , written as n×K matrix
I matrixG = xx> = (xi · xj) is theGram matrix of x
I Schoenberg’s theorem: relation between EDMs and Gram

matrices
G = −1

2
JD2J (§)

I D2 = (d2ij), J = In − 1
n
11>
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Multidimensional scaling (MDS)

I Often get approximate EDMs D̃ from raw data
(dissimilarities, discrepancies, di�erences)

I G̃ = −1
2
JD̃2J is an approximate Grammatrix

I Approximate Gram⇒ spectral decomposition P Λ̃P> has Λ̃ 6≥ 0

I Let Λ be closest PSD diagonal matrix to Λ̃:
zero the negative components of Λ̃

I x = P
√

Λ is an “approximate realization” of D̃
I Dimensionality of x is |{Λii > 0 | i ≤ n}|
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Subsection 2

Principal Component Analysis
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Principal Component Analysis (PCA)

I MDS with fixed K

I Motivation: “draw” x = P
√

Λ in 2D or 3D
but rank(Λ) = K > 3

I Only keep 2 or 3 largest components of Λ
zero the rest

I Get realization in desired space

[Pearson 1901]

58 / 91



Getting primal solutions from SDP/DDP

I SDP is a relaxation of the original problem
I DDP is an inner approximation of SDP
I Both return realizations inRn

I We need them inRK

I Use PCA to lower dimension
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Computational evaluation

I Download protein files from Protein Data Bank (PDB)
they contain atom realizations

I Mimick a Nuclear Magnetic Resonance experiment
Keep only pairwise distances < 5.5

I Try and reconstruct the protein shape from those weighted graphs
I Quality evaluation of results:

I LDE(x) = max
{i,j}∈E

| ‖xi − xj‖2 − dij |

I MDE(x) = 1
|E|

∑
{i,j}∈E

| ‖xi − xj‖2 − dij |
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SDP vs. DDP: tests

SDP solved withMosek, DDP with CPLEX

SDP/DDP + PCA

SDP DDP
Instance LDE MDE CPU modl/soln LDE MDE CPU modl/soln
C0700odd.1 0.79 0.34 0.06/0.12 0.38 0.30 0.15/0.15
C0700.odd.G 2.38 0.89 0.57/1.16 1.86 0.58 1.11/0.95
C0150alter.1 1.48 0.45 0.73/1.33 1.54 0.55 1.23/1.04
C0080create.1 2.49 0.82 1.63/7.86 0.98 0.67 3.39/4.07
1guu-1 0.50 0.15 6.67/684.89 1.00 0.85 37.74/153.17
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Subsection 3

Isomap for the DGP
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Isomap for the DGP

1. LetD′ be the (square) weighted adjacency matrix ofG
2. CompleteD′ to approximate EDM D̃

3. MDS/PCA on D̃⇒ obtain embedding x ∈ RK

for given K

Vary Step 2 to generate Isomap heuristics

[Tenenbaum et al. 2000, L. & D’Ambrosio 2017]
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Variants for Step 2

A. Floyd-Warshall all-shortest-paths algorithm onG
(classic Isomap)

B. Find a spanning tree (SPT) ofG, compute any embedding x̄ ∈ RK for STP,
use its EDM

C. Solve a push-and-pull SDP relaxation, get soln. x̄ ∈ Rn, use its EDM
seen previously

D. SDP with “Barvinok objective”, sol. x̄ ∈ Rr with
r ≤ b(

√
8|E|+ 1− 1)/2c, use its EDM

haven’t really talked about this, sorry

Post-processing: x̃ as starting point for NLP descent in GO formulation

[L. & D’Ambrosio 2017]
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Results
Comparison with dgsol [Moré, Wu 1997]

65 / 91



Outline

Clustering
Clustering in graphs
Clustering in Euclidean spaces

Euclidean Distance Geometry
Applications
Computational complexity
Number of solutions
Solution methods

Distance resolution limit

When to start worrying
Approximate projections

Classic MDS
PCA
Isomap for the DGP

Random projections
Barvinok’s naive algorithm
Johnson-Lindenstrauss Lemma
More efficient clustering

66 / 91



Random projections
The mathematics of big data
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Subsection 1

Barvinok’s naive algorithm
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Concentration of measure

From [Barvinok, 1997]
The value of a “well behaved” function at a random point
of a “big” probability space X is “very close” to the mean
value of the function.

and
In a sense, measure concentration can be considered as an
extension of the law of large numbers.
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Concentration of measure

Given Lipschitz function f : X → R s.t.

∀x, y ∈ X |f(x)− f(y)| ≤ L‖x− y‖2

for someL ≥ 0, there is concentration of measure if ∃ constants c, C
s.t.

∀ε > 0 Px(|f(x)− E(f)| > ε) ≤ c e−Cε
2/L2

≡ “discrepancy from mean is unlikely”
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Barvinok’s theorem

Consider:

I for each k ≤ m, manifoldsXk = {x ∈ Rn | x>Qkx = ak}
I a feasibility problem x ∈

⋂
k≤m
Xk

I its SDP relaxation ∀x ≤ m (Qk •X = ak)with soln. X̄

Let T = factor(X̄) , y ∼ Nn(0, 1) and x′ = Ty

Then ∃c and n0 ∈ N s.t. if n ≥ n0,

Prob

(
∀k ≤ m dist(x′,Xk) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9.

IDEA: since x′ is “close” to eachXk
try local Nonlinear Programming (NLP)
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Application to the DGP

I ∀{i, j} ∈ E Xij = {x ∈ RnK | ‖xi − xj‖22 = d2ij}

I DGP can be written as
⋂

{i,j}∈E
Xij

I SDP relaxationXii + Xjj − 2Xij = d2ij ∧X � 0 with
soln. X̄

I Difference with Barvinok: x ∈ RKn, rk(X̄) ≤ K

I IDEA: sample y ∼ N nK(0, 1√
K

)

I Thm. Barvinok’s theorem works in rankK
[L. & Vu, unpublished]
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The heuristic

1. Solve SDP relaxation of DGP, get soln. X̄
use DDP+LP if SDP+IPM too slow

2. a. T = factor(X̄)
b. y ∼ N nK(0, 1√

K
)

c. x′ = Ty

3. Use x′ as starting point for a local NLP solver on formulation

min
x

∑
{i,j}∈E

(
‖xi − xj‖2 − d2ij

)2
and return improved solution x

[Dias & L., 2016]
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SDP+Barvinok vs. DDP+Barvinok

SDP DDP
Instance LDE MDE CPU LDE MDE CPU
C0700odd.1 0.00 0.00 0.63 0.00 0.00 1.49
C0700.odd.G 0.00 0.00 21.67 0.42 0.01 30.51
C0150alter.1 0.00 0.00 29.30 0.00 0.00 34.13
C0080create.1 0.00 0.00 139.52 0.00 0.00 141.49
1b03 0.18 0.01 132.16 0.38 0.05 101.04
1crn 0.78 0.02 800.67 0.76 0.04 522.60
1guu-1 0.79 0.01 1900.48 0.90 0.04 667.03

Most of the CPU time taken by local NLP solver
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Subsection 2

Johnson-Lindenstrauss Lemma
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Randomly losing dimensions

I “Mathematics of big data”
I In a nutshell

I Clustering on A′ rather than A
yields approx. same results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]

76 / 91



Randomly losing dimensions

I “Mathematics of big data”
I In a nutshell

1. Given pointsAi, . . . , An ∈ Rm withm large and ε ∈ (0, 1)

2. Pick “appropriate” k ≈ O( 1
ε2

lnn)

3. Sample k × dmatrix T (each comp. i.i.d. N (0, 1√
k
))

4. Consider projected pointsA′i = TAi ∈ Rk for i ≤ n

5. With prob→ 1 exponentially fast as k →∞

∀i, j ≤ n (1−ε)‖Ai−Aj‖2 ≤ ‖A′i−A′j‖2 ≤ (1+ε)‖Ai−Aj‖2

[Johnson & Lindenstrauss, 1984]
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The shape of a set of points

I Lose dimensions but not too much accuracy
GivenA1, . . . , An ∈ Rm find k � m and points
A′1, . . . , A

′
n ∈ Rk s.t. A andA′ “have almost the same shape”

I What is the shape of a set of points?

A’

A

congruent sets have the same shape
I Approximate congruence⇔ distortion:

A,A′ have almost the same shape if
∀i < j ≤ n (1− ε)‖Ai −Aj‖ ≤ ‖A′i −A′j‖ ≤ (1 + ε)‖Ai −Aj‖
for some small ε > 0

Assume norms are all Euclidean
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Losing dimensions= “projection”

In the plane, hopeless

In 3D: no better
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Johnson-Lindenstrauss Lemma

Thm.
GivenA ⊆ Rm with |A| = n and ε > 0 there is k ∼ O( 1

ε2
lnn) and

a k ×mmatrix T s.t.

∀x, y ∈ A (1− ε)‖x− y‖ ≤ ‖Tx− Ty‖ ≤ (1 + ε)‖x− y‖

If k×mmatrix T is sampled componentwise fromN(0, 1√
k
), thenA

and TA have almost the same shape

[Johnson & Lindenstrauss, 1984]
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Sketch of a JLL proof by pictures
Thm.
Let T be a k×m rectangular matrix with each

component sampled fromN(0, 1√
k
), andu ∈

Rm s.t. ‖u‖ = 1. Then E(‖Tu‖2) = 1
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In practice

I Empirically, sample T very few times (e.g. once will do!)
on average ‖Tx− Ty‖ ≈ ‖x− y‖, and distortion decreases
exponentially with n

We only need a logarithmic number of dimensions in function of the
number of points

Surprising fact:
k is independent of the original number of dimensions m
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Subsection 3

More efficient clustering
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Clustering Google images

[L. & Lavor, in press]
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k-means without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]

Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

Too slow!
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k-means with random projections

Get["Projection.m"];

VKimg = JohnsonLindenstrauss[VHimg, 0.1];

VKcl = Timing[ClusteringComponents[VKimg, 3, 1]]

Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

From 0.405s CPU time to 0.00232s
Same clustering
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Works on the MSSCMP formulation too!

min
x,y,s

∑
i≤n

∑
j≤d
‖Tpi − Tyj‖22 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = Tyj

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d yj ∈ Rm

x ∈ {0, 1}nd
s ∈ Nd


where T is a k ×m random projector
replace Ty by y′
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Works on the MSSCMP formulation too!

min
x,y′,s

∑
i≤n

∑
j≤d
‖Tpi − y′j‖22 xij

∀j ≤ d 1
sj

∑
i≤n

Tpixij = y′j

∀i ≤ n
∑
j≤d

xij = 1

∀j ≤ d
∑
i≤n

xij = sj

∀j ≤ d y′j ∈ Rk

x ∈ {0, 1}nd
s ∈ Nd


(MSSC′)

I where k = O( 1
ε2

lnn)

I less data, |y′| < |y| ⇒ get solutions faster
I Yields smaller cMINLP
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Random projections in MP

I Random projections work in many more MP settings
I Linear Programming [Vu, Poirion, L. MOR, to appear]
I Trust-region subproblem formulations [working paper]
I SDP and SOCP [working paper]
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Summary

Graphs and weighted graphs necessary to model data
1. Computers can “reason by analogy” (clustering)

Modularity clustering
2. Clustering on vectors allows more flexibility

k-means, MSSC
3. Need to embed (weighted) graphs into Euclidean spaces

Metric embeddings, Distance Geometry
4. High dimensions make clustering expensive/unstable

Distance resolution limit
5. Use approximate projections to reduce dimensions

MDS/PCA, random projections
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