Distance Geometry in Data Science

Leo Liberti, CNRS LIX Ecole Polytechnique liberti@lix.polytechnique.fr

Seminar @SystemX 180118

My line of reasoning

(Weighted) graphs are appropriate tools to model data

1. Computers can "reason by analogy"

un/supervised ML: clustering, artificial neural networks...

- 2. Clustering on vectors allows more flexibility ANNs <u>need</u> vector input
- 3. Need to embed (weighted) graphs into Euclidean spaces
- 4. High dimensions make clustering expensive/unstable
- 5. Lower-dimensional projections improve efficiency/stability

Outline

Clustering

Clustering in graphs Clustering in Euclidean spaces Euclidean Distance Geometry Applications Computational complexity Number of solutions Solution methods Distance resolution limit When to start worrying Approximate projections Classic MDS PCA Isomap for the DGP Random projections Barvinok's naive algorithm Johnson-Lindenstrauss Lemma More efficient clustering

Clustering

"Machine intelligence": analogy based on proximity

Subsection 1

Clustering in graphs

Modularity clustering

"Modularity is the fraction of the edges that fall within a cluster minus the expected fraction if edges were distributed at random."

- *"at random"* = random graphs over same degree sequence
- degree sequence = (k_1, \ldots, k_n) where $k_i = |N(i)|$
- *"expected"* = all possible "half-edge" recombinations

- expected edges between $u, v: k_u k_v / (2m)$ where m = |E|
- $\blacktriangleright \mod(u,v) = (A_{uv} k_u k_v / (2m))$

►
$$\operatorname{mod}(G) = \sum_{\{u,v\} \in E} \operatorname{mod}(u,v) x_{uv}$$

 $x_{uv} = 1$ if u, v in the same cluster and 0 otherwise

• "Natural extension" to weighted graphs: $k_u = \sum_v A_{uv}, m = \sum_{uv} A_{uv}$

[Girvan & Newman 2002]

Use modularity to define clustering

What is the "best clustering"?

 Maximize discrepancy between actual and expected "as far away as possible from average"

$$\max \quad \sum_{\{u,v\} \in E} \mathsf{mod}(u,v) x_{uv}$$
$$\forall u \in V, v \in V \quad x_{uv} \in \{0,1\}$$

- Issue: trivial solution x = 1 "one big cluster"
- Idea: treat clusters as cliques then clique partitioning constraints for transitivity

if $i, j \in C$ and $j, k \in C$ then $i, k \in C$

[Aloise et al. 2010]

Maximizing the modularity of a graph

- ► Modularity Maximization MP is a MILP
- ▶ *MILP is* **NP**-hard but ∃ technologically advanced solvers
- Otherwise, use (fast) heuristics
- Unlike other methods, this <u>decides</u> the number of clusters

[Cafieri et al. 2014]

Subsection 2

Clustering in Euclidean spaces

Minimum sum-of-squares clustering

- ► MSSC, a.k.a. the *k*-means problem (*k* =#clusters)
- Given points $p_1, \ldots, p_n \in \mathbb{R}^m$, find clusters C_1, \ldots, C_k

$$\min \sum_{j \le k} \sum_{i \in C_j} \|p_i - \mathsf{centroid}(C_j)\|_2^2$$

where centroid
$$(C_j) = \frac{1}{|C_j|} \sum_{i \in C_j} p_i$$

- k-means alg.: given initial clustering C₁,..., C_k vars x_{ij} = 1 if i assigned to j (0 othw)
 - I: $\forall j \leq k \text{ compute } y_j = \text{centroid}(C_j)$
 - 2: $\forall i \leq n, j \leq k$ if y_j is the closest centroid to p_i let $x_{ij} = 1$ else 0
 - 3: $\forall j \leq k \text{ update } C_j \leftarrow \{p_i \mid x_{ij} = 1 \land i \leq n\}$
 - 4: repeat until stability

note that k is given (unlike modularity clustering)

[MacQueen 1967, Aloise et al. 2012]

MP formulation

$$\begin{array}{ll}
\min_{x,y,s} & \sum_{i \leq n} \sum_{j \leq k} \|p_i - y_j\|_2^2 x_{ij} \\
\forall j \leq k & \frac{1}{s_j} \sum_{i \leq n} p_i x_{ij} = y_j \\
\forall i \leq n & \sum_{j \leq k} x_{ij} = 1 \\
\forall j \leq k & \sum_{i \leq n} x_{ij} = s_j \\
\forall j \leq k & y_j \in \mathbb{R}^m \\
& x \in \{0,1\}^{nk} \\
& s \in \mathbb{N}^k
\end{array} \right\}$$
(MSSC)

MINLP: nonconvex terms; continuous, binary and integer variables

Reformulation

The (MSSC) formulation has the same optima as:

 The only nonconvexities are products of binary by continuous bounded variables

Products of binary and continuous vars.

- Suppose term xy appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [0, 1]$ is bounded
- means "either z = 0 or z = y"
- Replace xy by a new variable z
- Adjoin the following constraints:

$$z \in [0, 1]$$

$$y - (1 - x) \leq z \leq y + (1 - x)$$

$$-x \leq z \leq x$$

• \Rightarrow Everything's linear now!

[Fortet 1959]

Products of binary and continuous vars.

- ► Suppose term *xy* appears in a formulation
- Assume $x \in \{0, 1\}$ and $y \in [y^L, y^U]$ is bounded
- means "either z = 0 or z = y"
- Replace xy by a new variable z
- Adjoin the following constraints:

$$z \in [\min(y^{L}, 0), \max(y^{U}, 0)]$$

$$y - (1 - x) \max(|y^{L}|, |y^{U}|) \leq z \leq y + (1 - x) \max(|y^{L}|, |y^{U}|)$$

$$-x \max(|y^{L}|, |y^{U}|) \leq z \leq x \max(|y^{L}|, |y^{U}|)$$

• \Rightarrow Everything's linear now!

[L. et al. 2009]

MSSC is a convex MINLP

$$\begin{split} \min_{\substack{x,y,P,\chi,\xi}} & \sum_{i \leq n} \sum_{j \leq k} \chi_{ij} \\ \forall i \leq n, j \leq k \quad 0 \leq \chi_{ij} \leq P_{ij} \\ \forall i \leq n, j \leq qquadP_{ij} - (1 - x_{ij})P^U \leq \chi_{ij} \leq x_{ij}P^U \\ \forall i \leq n, j \leq k \quad \|p_i - y_j\|_2^2 \leq P_{ij} \quad \Leftarrow \text{ convex} \\ \forall j \leq k \quad \sum_{i \leq n} p_i x_{ij} = \sum_{i \leq n} \xi_{ij} \\ \forall i \leq n, j \leq k \quad y_j - (1 - x_{ij}) \max(|y^L|, |y^U|) \leq \xi_{ij} \leq y_j + (1 - x_{ij}) \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq k \quad -x_{ij} \max(|y^L|, |y^U|) \leq \xi_{ij} \leq x_{ij} \max(|y^L|, |y^U|) \\ \forall i \leq n, j \leq k \quad y_j \in [y^L, y^U] \\ & \chi \in \{0, 1\}^{nk} \\ P \in [0, P^U]^{nk} \\ & \chi \in [0, P^U]^{nk} \\ & \forall i \leq n, j \leq k \quad \xi_{ij} \in [\min(y^L, 0), \max(y^U, 0)] \end{split}$$

 y_j, ξ_{ij}, y^L, y^U are vectors in \mathbb{R}^m

Solving the MSSC

k-means

- heuristic (optimum not guaranteed)
- ▶ fast, well-known, lots of analyses
- scales reasonably well
- implemented in practically all languages
- convex MINLP
 - exact (guaranteed global optima)
 - reasonably fast only for small sizes
 - scales exponentially
 - Solvers: KNITRO (commercial), Bonmin (free) need an MP language interpreter (AMPL)

Outline

Clustering

Clustering in graphs Clustering in Euclidean spaces

Euclidean Distance Geometry

Applications Computational complexity Number of solutions Solution methods Distance resolution limit When to start worrying Approximate projections Classic MDS PCA Isomap for the DGP Random projections Barvinok's naive algorithm Johnson-Lindenstrauss Lemma More efficient clustering

Euclidean Distance Geometry Embedding weighted graphs in ℓ_2

Distance Geometry Problem (DGP)

Given $K \in \mathbb{N}$ and G = (V, E, d) with $d : E \to \mathbb{R}_+$, find $x : V \to \mathbb{R}^K$ s.t.

$$\forall \{i, j\} \in E \quad ||x_i - x_j||_2^2 = d_{ij}^2$$

[Cayley 1841, Menger 1928, Schoenberg 1935, Yemini 1978]

Subsection 1

Applications

Some applications

- clock synchronization (K = 1)
- sensor network localization (K = 2)
- molecular structure from distance data (K = 3)
- autonomous underwater vehicles (K = 3)
- distance matrix completion (whatever K)

Clock synchronization

From [Singer, Appl. Comput. Harmon. Anal. 2011]

Determine a set of unknown timestamps from a partial measurements of their time differences

- ► *K* = 1
- ► V: timestamps
- ▶ $\{u, v\} \in E$ if known time difference between u, v
- ► *d*: values of the time differences

Used in time synchronization of distributed networks

Sensor network localization

From [Yemini, Proc. CDSN, 1978]

The positioning problem arises when it is necessary to locate a set of geographically distributed objects using measurements of the distances between some object pairs

- ► *K* = 2
- ► V: (mobile) sensors
- ▶ $\{u, v\} \in E$ iff distance between u, v is measured
- ► *d*: distance values

Used whenever GPS not viable (e.g. underwater) $d_{uv} \lesssim \text{battery consumption in P2P communication betw. } u, v$

Molecular structure from distance data

From [L. et al., SIAM Rev., 2014]

- ► *K* = 3
- ► V: atoms
- $\{u, v\} \in E$ iff distance between u, v is known
- ► *d*: distance values

Used whenever X-ray crystallography does not apply (e.g. liquid) Covalent bond lengths and angles known precisely Distances $\lessapprox 5.5$ measured approximately by NMR

Subsection 2

Computational complexity

Complexity class

- DGP₁ with $d: E \to \mathbb{Q}_+$ is in **NP**
 - if instance YES \exists realization $x \in \mathbb{R}^{n \times 1}$
 - if some component $x_i \notin \mathbb{Q}$ translate x so $x_i \in \mathbb{Q}$
 - consider some other x_j
 - ▶ let $\ell = (\text{length sh. path } p : i \to j) = \sum_{\{u,v\} \in p} d_{uv} \in \mathbb{Q}$

• then
$$x_j = x_i \pm \ell \to x_j \in \mathbb{Q}$$

• \Rightarrow verification of

$$\forall \{i, j\} \in E \quad |x_i - x_j| = d_{ij}$$

in polytime

• DGP_K may not be in **NP** for K > 1

don't know how to verify $||x_i - x_j||_2 = d_{ij}$ for $x \notin \mathbb{Q}^{nK}$

Hardness

- ► DGP₁ is **NP**-hard by reduction from PARTITION Given $a = (a_1, ..., a_n) \in \mathbb{N}^n, \exists I \subseteq \{1, ..., n\}$ s.t. $\sum_{i \in I} a_i = \sum_{i \notin I} a_i$?
- $\blacktriangleright a \longrightarrow \text{cycle } C$ $V(C) = \{1, \dots, n\}, E(C) = \{\{1, 2\}, \dots, \{n, 1\}\}$
- For i < n let $d_{i,i+1} = a_i$ and $d_{n,n+1} = d_{n1} = a_n$
- E.g. for a = (1, 4, 1, 3, 3), get cycle graph:

► Argue DGP₁ is YES iff PARTITION is YES choose x_i right/left of $x_{i-1} \Leftrightarrow i \in I$ or $\notin I$

[Saxe, 1979]

Subsection 3

Number of solutions modulo congruences

Examples

$$\begin{split} V^1 &= \{1,2,3\} \\ E^1 &= \{\{u,v\} \mid u < v\} \\ d^1 &= 1 \end{split}$$

 $V^{2} = V^{1} \cup \{4\}$ $E^{2} = E^{1} \cup \{\{1,4\},\{2,4\}\}$ $d^{2} = 1 \land d_{14} = \sqrt{2}$

$$\begin{split} V^3 &= V^2 \\ E^3 &= \{\{u, u+1\} | u \leq 3\} \cup \{1, 4\} \\ d^1 &= 1 \end{split}$$

 ρ congruence in \mathbb{R}^2 $\Rightarrow \rho x$ valid realization |X| = 1

 $\begin{array}{l} \rho \text{ reflects } x_4 \text{ wrt } \overline{x_1, x_2} \\ \Rightarrow \rho x \text{ valid realization} \\ |X| = 2 \ (\begin{subarray}{c} A \\ A \end{subarray}) \end{array}$

 $\begin{array}{l} \rho \text{ rotates } \overline{x_2 x_3}, \ \overline{x_1 x_4} \text{ by } \theta \\ \Rightarrow \rho x \text{ valid realization} \\ |X| \text{ is uncountable} \\ (\Box, \Box, \Box, \Box, \frown, \ldots) \end{array}$

Rigidity, flexibility and |X|

- infeasible $\Leftrightarrow |X| = 0$
- rigid graph $\Leftrightarrow |X| < \aleph_0$
- globally rigid graph $\Leftrightarrow |X| = 1$
- flexible graph $\Leftrightarrow |X| = 2^{\aleph_0}$
- DMDGP graphs $\Leftrightarrow |X|$ a power of 2
- $|X| = \aleph_0$: impossible by Milnor's theorem

[Milnor 1964, L. et al. 2013]

Milnor's theorem implies $|X| \neq \aleph_0$

► System S of polynomial equations of degree 2

$$\forall i \le m \quad p_i(x_1, \dots, x_{nK}) = 0$$

- Let X be the set of $x \in \mathbb{R}^{nK}$ satisfying S
- Number of connected components of X is O(3^{nK})
 [Milnor 1964]
- If |X| is countably ∞ then G cannot be flexible
 ⇒ incongruent elts of X are separate connected components
 ⇒ by Milnor's theorem, there's finitely many of them

Subsection 4

MP based solution methods

Unconstrained Global Optimization

$$\min_{x} \sum_{\{u,v\} \in E} (\|x_u - x_v\|_2^2 - d_{uv}^2)^2 \tag{I}$$

Globally optimal obj. fun. value of (1) is o iff x solves DGP

Computational experiments in [L. et al., 2006]:

- ► GO solvers from 10 years ago
- ▶ randomly generated protein data: ≤ 50 atoms
- ▶ cubic crystallographic grids: ≤ 64 atoms

Constrained global optimization

- $\min_x \sum_{\{u,v\}\in E} |||x_u x_v||_2^2 d_{uv}^2|$ exactly reformulates DGP
- ► Relax objective f to concave part, remove constant term, rewrite min -f as max f
- ▶ Reformulate convex part of obj. fun. to convex constraints
- ► Exact reformulation

$$\max_{\substack{\{u,v\} \in E \\ \forall \{u,v\} \in E \ \|x_u - x_v\|_2^2 \le d_{uv}^2}}$$
 (2)

[Mencarelli et al. 2017]

Linearization

$$\forall \{i, j\} \in E \quad \|x_i - x_j\|_2^2 = d_{ij}^2$$

$$\Rightarrow \quad \forall \{i, j\} \in E \quad \|x_i\|_2^2 + \|x_j\|_2^2 - 2x_i \cdot x_j = d_{ij}^2$$

$$\Rightarrow \quad \left\{ \begin{array}{ccc} \forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2 \\ & X = x x^\top \end{array} \right.$$

$$X = x \, x^\top \Leftrightarrow \forall i, j \; X_{ij} = x_i x_j$$

Relaxation

$$\begin{array}{rcl} X &=& x \, x \\ \Rightarrow & X - x \, x^{\top} &=& 0 \end{array}$$
$$(\text{relax}) &\Rightarrow & X - x \, x^{\top} &\succeq& 0 \\ \text{Schur}(X, x) = \left(\begin{array}{cc} I_K & x^{\top} \\ x & X \end{array}\right) &\succeq& 0 \end{array}$$

If x does not appear elsewhere \Rightarrow get rid of it (e.g. choose x = 0):

replace Schur
$$(X, x) \succeq 0$$
 by $X \succeq 0$

Reason for this "weird" relaxation: there are efficient solvers for Semidefinite Programming (SDP)
SDP relaxation

$$\min F \bullet X$$

$$\forall \{i, j\} \in E \quad X_{ii} + X_{jj} - 2X_{ij} = d_{ij}^2$$

$$X \succeq 0$$

How do we choose F?

For protein conformation:

$$\max \sum_{\{i,j\} \in E} (X_{ii} + X_{jj} - 2X_{ij})$$

with = changed to \leq in constraints (or min and \geq) [Dias & L. 2016] "push-and-pull" the realization

When SDP solvers hit their size limit

- SDP solver: technological bottleneck
- How can we best use an LP solver?
- ► Diagonally Dominant (DD) matrices are PSD
- ▶ Not vice versa: inner approximate PSD cone $Y \succeq 0$
- ► Idea by A.A. Ahmadi and co-authors

[Ahmadi & Majumdar 2014, Ahmadi & Hall 2015]

Diagonally dominant matrices

 $n \times n$ matrix X is DD if

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}|.$$

E.g.
$$\begin{pmatrix} 1 & 0.1 & -0.2 & 0 & 0.04 & 0 \\ 0.1 & 1 & -0.05 & 0.1 & 0 & 0 \\ -0.2 & -0.05 & 1 & 0.1 & 0.01 & 0 \\ 0 & 0.1 & 0.1 & 1 & 0.2 & 0.3 \\ 0.04 & 0 & 0.01 & 0.2 & 1 & -0.3 \\ 0 & 0 & 0 & 0.3 & -0.3 & 1 \end{pmatrix}$$

DD Linearization

$$\forall i \le n \quad X_{ii} \ge \sum_{j \ne i} |X_{ij}| \tag{*}$$

- introduce "sandwiching" variable T
- write |X| as T
- add constraints $-T \leq X \leq T$
- by \geq constraint sense, write (*) as

$$X_{ii} \ge \sum_{j \ne i} T_{ij}$$

DD Programming (DDP) formulation

$$\min \sum_{\{i,j\}\in E} (X_{ii} + X_{jj} - 2X_{ij})$$

$$\forall \{i,j\} \in E \qquad X_{ii} + X_{jj} - 2X_{ij} \geq d_{ij}^{2}$$

$$\forall i \leq n \qquad \sum_{\substack{j \leq n \\ j \neq i}} T_{ij} \leq X_{ii}$$

$$-T \leq X \leq T$$

$$T \geq 0$$

This is just an LP, much more efficient to solve than SDP!

[Dias & L., 2016]

Outline

Clustering

Clustering in graphs Clustering in Euclidean spaces Euclidean Distance Geometry

Applications Computational complexity Number of solutions Solution methods

Distance resolution limit

When to start worrying

Approximate projections Classic MDS PCA Isomap for the DGP Random projections Barvinok's naive algorithm Johnson-Lindenstrauss Lemma More efficient clustering

Distance resolution limit Clustering in high dimensions is unstable

Nearest Neighbours

basic problem in data science

 pattern recognition, computational geometry, machine learning, data compression, robotics, recommender systems, information retrieval, natural language processing and more

Example: Used in Step 2 of k-means: assign points to closest centroid

the two ks in k-means and k-NN are <u>not the same</u>

With random variables

- Consider I-NN
- Let $\ell = |\mathcal{X}|$
- ► Distance function family $\{d^m : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+\}_m$
- ► For each *m*:

- for $i \leq \ell$, random variable X_i^m with some distrib. over \mathbb{R}^n
- X_i^m iid w.r.t. i, Z^m independent of all X_i^m
- $\blacktriangleright D^m_{\min} = \min_{i \le \ell} d^m(Z^m, X^m_i)$
- $\bullet \ D^m_{\max} = \max_{i \le \ell} d^m(Z^m, X^m_i)$

Distance Instability Theorem

- Let p > 0 be a constant
- ► If

 $\exists i \leq \ell \quad (d^m(Z^m, X^m_i))^p \text{ converges as } m \to \infty$

then, for any $\varepsilon > 0$,

closest and furthest point are at about the same distance

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. iMeaning of m: e.g. dimension

[Beyer et al. 1999]

Distance Instability Theorem

- Let p > 0 be a constant
- ► If

 $\begin{aligned} \exists i \leq \ell & \lim_{m \to \infty} \operatorname{Var}((d^m(Z^m, X^m_i))^p) = 0 \\ \text{then, for any } \varepsilon > 0, \\ & \lim_{m \to \infty} \mathbb{P}(D^m_{\max} \leq (1 + \varepsilon) D^m_{\min}) = 1 \end{aligned}$

Note " $\exists i$ " suffices since $\forall m$ we have X_i^m iid w.r.t. iMeaning of m: e.g. dimension

[Beyer et al. 1999]

Subsection 1

When to start worrying

When the limit applies

- ▶ iid random variables from any distribution
- ▶ Particular forms of correlation e.g. $U_i \sim \text{Uniform}(0, \sqrt{i}), X_1 = U_1, X_i = U_i + (X_{i-1}/2)$ for i > 1
- ► Variance tending to zero e.g. X_i ~ N(0, 1/i)
- Discrete uniform distribution on *m*-dimensional hypercube for both data and query
- Computational experiments: instability already with n > 15

... and when it doesn't

- Complete linear dependence on all distributions can be reduced to NN in ID
- ► Exact and approximate matching query point = (or ≈) data point
- Query point in a well-separated cluster in data
- Implicitly low dimensionality project; but NN must be stable in lower dim.

Outline

Clustering

Clustering in graphs Clustering in Euclidean spaces Euclidean Distance Geometry

Applications Computational complexity Number of solutions Solution methods Distance resolution limit When to start worrying

Approximate projections

Classic MDS PCA Isomap for the DGP

Random projections

Barvinok's naive algorithm Johnson-Lindenstrauss Lemma More efficient clustering

Approximate projections Losing dimensions but not too much information

Lower dimensional (approximate) embeddings

- Given distance matrix, find approximate Euclidean embedding
- Application: visualize a metric space $\overline{e.g. embed genealogy tree in \mathbb{R}^3}$ (some errors allowed)
- ► For visualization purposes, $K \in \{1, 2, 3\}$ for other purposes, K < n

Classical methods

- Multi-Dimensional Scaling (MDS)
- Principal Component Analysis (PCA)

Subsection 1

Classic Multidimensional Scaling

Gram in function of EDM

- $x = (x_1, \ldots, x_n) \subseteq \mathbb{R}^K$, written as $n \times K$ matrix
- matrix $G = xx^{\top} = (x_i \cdot x_j)$ is the *Gram matrix* of x
- Schoenberg's theorem: relation between EDMs and Gram matrices

$$G = -\frac{1}{2}JD^2J \qquad (\S)$$

•
$$D^2 = (d_{ij}^2), J = I_n - \frac{1}{n} \mathbf{1} \mathbf{1}^\top$$

Multidimensional scaling (MDS)

- Often get approximate EDMs D
 from raw data (dissimilarities, discrepancies, differences)
- $\tilde{G} = -\frac{1}{2}J\tilde{D}^2J$ is an approximate Gram matrix
- Approximate Gram \Rightarrow spectral decomposition $P\tilde{\Lambda}P^{\top}$ has $\tilde{\Lambda} \not\geq 0$
- Let Λ be closest PSD diagonal matrix to Λ:
 zero the negative components of Λ
- $x = P\sqrt{\Lambda}$ is an "approximate realization" of \tilde{D}
- Dimensionality of x is $|\{\Lambda_{ii} > 0 \mid i \leq n\}|$

Subsection 2

Principal Component Analysis

Principal Component Analysis (PCA)

- $\bullet \quad MDS \text{ with fixed } K$
- Motivation: "draw" $x = P\sqrt{\Lambda}$ in 2D or 3D but rank $(\Lambda) = K > 3$
- Only keep 2 or 3 largest components of Λ zero the rest
- ► Get realization in desired space

[Pearson 1901]

Getting primal solutions from SDP/DDP

- ► SDP is a *relaxation* of the original problem
- DDP is an *inner approximation* of SDP
- Both return realizations in \mathbb{R}^n
- We need them in \mathbb{R}^K
- ► Use PCA to lower dimension

Computational evaluation

- Download protein files from Protein Data Bank (PDB) they contain atom realizations
- Mimick a Nuclear Magnetic Resonance experiment Keep only pairwise distances < 5.5
- ► Try and reconstruct the protein shape from those weighted graphs
- Quality evaluation of results:

•
$$LDE(x) = \max_{\{i,j\} \in E} | ||x_i - x_j||_2 - d_{ij}|$$

• $MDE(x) = \frac{1}{|E|} \sum_{\{i,j\} \in E} | ||x_i - x_j||_2 - d_{ij}|$

SDP solved with Mosek, DDP with CPLEX

SDP/DDP + PCA

		SE)P	DDP						
Instance	LDE MDE		CPU modl/soln	LDE	MDE	CPU modl/soln				
C0700odd.1	0.79	0.34	0.06/0.12	0.38	0.30	0.15/0.15				
C0700.odd.G	2.38	0.89	0.57/1.16	1.86	0.58	1.11/0.95				
C0150alter.1	1.48	0.45	0.73/1.33	1.54	0.55	1.23/1.04				
C0080create.1	2.49	0.82	1.63/7.86	0.98	0.67	3.39/4.07				
1guu-1	0.50	0.15	6.67/ <mark>684.8</mark> 9	1.00	0.85	37.74/153.17				

Subsection 3

Isomap for the DGP

Isomap for the DGP

- I. Let D' be the (square) weighted adjacency matrix of G
- 2. Complete D' to approximate EDM \tilde{D}
- 3. MDS/PCA on $\tilde{D} \Rightarrow$ obtain embedding $x \in \mathbb{R}^{K}$ for given K

Vary Step 2 to generate Isomap heuristics

[Tenenbaum et al. 2000, L. & D'Ambrosio 2017]

Variants for Step 2

- A. Floyd-Warshall all-shortest-paths algorithm on G (classic Isomap)
- B. Find a spanning tree (SPT) of G, compute any embedding $\bar{x} \in \mathbb{R}^{K}$ for STP, use its EDM
- C. Solve a push-and-pull SDP relaxation, get soln. $\bar{x} \in \mathbb{R}^n$, use its EDM seen previously
- **D.** SDP with "Barvinok objective", sol. $\bar{x} \in \mathbb{R}^r$ with $r \leq \lfloor (\sqrt{8|E|+1}-1)/2 \rfloor$, use its EDM *haven't really talked about this, sorry*

Post-processing: \tilde{x} as starting point for NLP descent in GO formulation

[L. & D'Ambrosio 2017]

Results

Comparison with dgsol [Moré, Wu 1997]

			-	4	ß	c	P		4	~	B	C	D		~	A	B	Ċ	D	
Insta	acc.				n	nde			-		h	de					C	PU		
Name	-	E	Isomap	IsoNLP	SPT	5DP	Barvinok	DGSol	Isomap	IsoNLP	SPT	SDP	Barvinok	DG5ol	Isomap	HONLP	SPT	SDP	Barvinok	DGSol
C0700odd.1	15	39	0.585	0.001	0.190	0.068	0.000	0.135	0.989	0.004	0.896	0.389	0.001	0,634	0.002	1.456	1.589	0.906	1.305	1.747
C0700odd.2	15	39	0.599	0.000	0.187	0.086	0.000	0.128	0.985	0.002	0.956	0.389	0.009	1,000	0.003	1.376	1,226	1.002	1.063	0.887
C07006dd.3	15	39	0.590	0.000	0.060	0.056	0.000	0.128	0.985	0.002	0.326	0.389	0.009	1.000	0.003	1.259	1.256	0.861	1.167	0,577
C0700odd.4	15	39	0.599	0.000	0.283	0.056	0.001	0.128	0.985	0.002	2.449	0.359	0.008	1.000	0.003	1.347	1.222	0.976	1.063	1.033
C0700odd.5	15	-39	0.599	0.000	0.225	0.086	0.000	0.128	0.985	0.002	0.867	0.389	0.007	1.000	0.003	1.284	1.157	0.987	1.100	0.700
C0700edd.6	15	39	0.599	0.000	0.283	0.086	0.000	0.128	0.985	0.002	1.520	0.389	0.002	1.000	0.002	1.372	1.190	0.008	1.305	0.909
C0700edd.7	15	39	0.585	0.001	0.080	0.068	0.000	0.135	0.089	0.004	0.361	0.389	0.001	0.634	0.003	1.409	1.322	0.894	1.093	1.719
C0700odd.8	15	39	0.585	0.001	0.056	0.068	0.000	0.135	0.089	0.004	0.275	0.389	0.003	0.634	0.003	1.408	1.300	0.602	1.079	1.744
C0700odd.9	15	39	0.585	0.001	0.057	0.068	0.000	0.135	0.089	0.004	0.301	0.389	0.002	0.634	0.002	1.430	1.173	0.791	1.003	1.745
C0700odd.A	15	30	0.585	0.001	0.043	0.068	0.000	0.135	0.089	0.004	0.316	0.389	0.004	0.634	0.002	1.294	1.200	0:722	1.220	1.523
C0700odd.B	15	30	0.585	0.001	0.151	0.068	0.000	0.135	0.089	0.004	1.022	0.389	0.004	0.634	0.002	1.297	1.279	0.871	L111	1.747
C0700odd.C	15	30	0.835	0.022	0.033	0.039	0.031	0.025	1.012	0.147	0.393	0.211	0.294	0.167	0.004	6.503	6.369	7.371	7.030	7.000
C0700odd.D	36	242	0.835	0.022	0.041	0.039	0.042	0.025	1.012	0.147	0.423	0.211	0.268	0.167	0.005	6.806	6.575	7.422	7.603	7.095
C0700odd.E	36	242	0.835	0.022	0.064	0.039	0.031	0.025	1.012	0.147	0.894	0.211	0.260	0.167	0.006	6.911	6.638	7.365	6.979	7.008
C0700odd F	36	242	0.599	0.000	0.047	0.086	0.000	0.128	0.985	0.002	0.308	0.389	0.005	1.000	0.002	1.299	1.310	1.008	1.100	1.040
C0150altar.1	37	335	0.786	0.058	0.066	0.014	0.015	0.010	0.992	0.571	0.693	0.256	0.285	0.253	0.004	9.492	9.456	10.276	10.120	0.272
COOSOcreate.	1.60	681	0.887	0.053	0.053	0.024	0.024	0.054	1.967	0.949	0.789	0.511	0.516	0.718	0.012	15.835	19.720	21.247	20.906	19,962
COOSOcreate.	2 60	681	0.887	0.053	0.047	0.024	0.024	0.054	1.967	0.949	0.585	0.511	0.512	0.718	0.008	15.791	20.009	21.728	20.855	19,740
C0020pdb	107	000	0.939	0.110	0.119	0.059	0.060	0.103	1.242	1.113	1.349	1.082	1.138	0.798	0.035	29.024	27.772	35.273	35.486	32.470
Iguu	150	955	0.986	0.068	0.069	0.057	0.057	0.061	0.999	0.854	0.830	0.735	0.751	0.768	0.048	30.869	28.784	41.468	41.852	37.848
1guu-1	150	959	0.986	0.061	0.063	0.058	0.057	0.060	1.000	0.711	0.855	0.805	0.829	0.778	0.053	31.322	31.442	42.308	41.590	37.218
1guu-4000	150	968	0.974	0.081	0.080	0.072	0.065	0.079	1,000	0.901	0.728	0.760	0.961	0.826	0.050	30.352	29.856	42,330	39.832	42.015
C0630pk1	198	3247	0.961	0.112	0.160	0.076	0.077	0.137	1.197	1.354	2.230	1.995	2.054	1.401	0.091	105,175	104.775	149.192	146.360	111.859
1PPT	302	3102	0.984	0.121	0.129	0.128	0.129	0.123	1.000	1.519	1.219	1.944	1.956	1.224	0.356	112 448	110.345	185.815	187.182	118.681
100d	488	5741	0.987	0.146	0.146	0.155	0.157	0.137	1.000	1.577	1.397	1.764	1.749	1.358	0.828	229.809	213.136	659.638	659.280	233.115
GraMean		-	10.74	0.00	0.09	0.06	0.00	0.08	1.07	0.04	0.73	0.50	0.06	0.66	0.01	6.30	6.04	5.93	6.63	6.30
Avy			0.76	0.04	0.11	10.07	0.03	0.10	1.09	0.44	0.88	0.63	0.47	0.77	0.06	20.12	25.21	49.69	49.55	.27.96
SiDev			0.17	0.05	0.07	0.03	0.04	0.01	0.27	0.55	0.57	0.52	0.65	0.34	0.18	/51.69	48.82	135.08	134.97	53.26

Outline

Clustering

Clustering in graphs Clustering in Euclidean spaces Euclidean Distance Geometry

Applications Computational complexity Number of solutions Solution methods When to start worrying Approximate projections Classic MDS PCA Isomap for the DGP

Random projections

Barvinok's naive algorithm Johnson-Lindenstrauss Lemma More efficient clustering

Random projections The mathematics of big data

Subsection 1

Barvinok's naive algorithm

Concentration of measure

From [Barvinok, 1997]

The value of a "well behaved" function at a random point of a "big" probability space X is "very close" to the mean value of the function.

and

In a sense, measure concentration can be considered as an extension of the law of large numbers.

Concentration of measure

Given Lipschitz function $f: X \to \mathbb{R}$ s.t.

$$\forall x, y \in X \quad |f(x) - f(y)| \le L ||x - y||_2$$

for some $L \ge 0$, there is *concentration of measure* if \exists constants c, C s.t.

$$\forall \varepsilon > 0 \quad \mathsf{P}_x(|f(x) - \mathbb{E}(f)| > \varepsilon) \le c \, e^{-C\varepsilon^2/L^2}$$

 \equiv "discrepancy from mean is unlikely"

Barvinok's theorem

Consider:

• for each $k \leq m$, manifolds $\mathcal{X}_k = \{x \in \mathbb{R}^n \mid x^\top Q^k x = a_k\}$

• a feasibility problem
$$x \in \bigcap_{k \le m} \mathcal{X}_k$$

• its SDP relaxation $\forall x \leq m \ (Q^k \bullet X = a_k)$ with soln. \bar{X}

Let
$$T = \operatorname{factor}(\bar{X})$$
, $y \sim \mathcal{N}^n(0, 1)$ and $x' = Ty$

Then $\exists c \text{ and } n_0 \in \mathbb{N}$ s.t. if $n \ge n_0$,

$$\mathsf{Prob}\left(orall k \leq m \operatorname{dist}(x', \mathcal{X}_k) \leq c \sqrt{\|\bar{X}\|_2 \ln n}
ight) \geq 0.9.$$

IDEA: since x' is "close" to each \mathcal{X}_k try local Nonlinear Programming (NLP)

Application to the DGP

- $\forall \{i, j\} \in E \quad \mathcal{X}_{ij} = \{x \in \mathbb{R}^{nK} \mid ||x_i x_j||_2^2 = d_{ij}^2\}$
- DGP can be written as $\bigcap_{\{i,j\}\in E} \mathcal{X}_{ij}$
- ► SDP relaxation $X_{ii} + X_{jj} 2X_{ij} = d_{ij}^2 \land X \succeq 0$ with soln. \overline{X}
- Difference with Barvinok: $x \in \mathbb{R}^{Kn}$, $\mathrm{rk}(\bar{X}) \leq K$
- IDEA: sample $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
- ► <u>Thm.</u> Barvinok's theorem works in rank *K* [L. & Vu, unpublished]
The heuristic

1. Solve SDP relaxation of DGP, get soln. \overline{X} use DDP+LP if SDP+IPM too slow

2. a.
$$T = \text{factor}(\bar{X})$$

b. $y \sim \mathcal{N}^{nK}(0, \frac{1}{\sqrt{K}})$
c. $x' = Ty$

3. Use x' as starting point for a local NLP solver on formulation

$$\min_{x} \sum_{\{i,j\} \in E} \left(\|x_i - x_j\|^2 - d_{ij}^2 \right)^2$$

and return improved solution x

[Dias & L., 2016]

SDP+Barvinok vs. DDP+Barvinok

		SDP			DDP	
Instance	LDE	MDE	CPU	LDE	MDE	CPU
C0700odd.1	0.00	0.00	0.63	0.00	0.00	I.49
C0700.odd.G	0.00	0.00	21.67	0.42	0.01	30.51
C0150alter.1	0.00	0.00	29.30	0.00	0.00	34.13
C0080create.1	0.00	0.00	139.52	0.00	0.00	141.49
1b03	0.18	0.01	132.16	0.38	0.05	101.04
1crn	0.78	0.02	800.67	0.76	0.04	522.60
1guu-1	0.79	0.01	1900.48	0.90	0.04	667.03

Most of the CPU time taken by local NLP solver

Subsection 2

Johnson-Lindenstrauss Lemma

Randomly losing dimensions

- "Mathematics of big data"
- In a nutshell

 Clustering on A' rather than A yields approx. same results with arbitrarily high probability (wahp)

[Johnson & Lindenstrauss, 1984]

Randomly losing dimensions

- "Mathematics of big data"
- In a nutshell
 - 1. Given points $A_i, \ldots, A_n \in \mathbb{R}^m$ with m large and $\varepsilon \in (0, 1)$
 - 2. Pick "appropriate" $k \approx O(\frac{1}{\varepsilon^2} \ln n)$
 - 3. Sample $k \times d$ matrix T (each comp. i.i.d. $\mathcal{N}(0, \frac{1}{\sqrt{k}})$)
 - 4. Consider *projected* points $A'_i = TA_i \in \mathbb{R}^k$ for $i \leq n$
 - 5. With prob ightarrow 1 exponentially fast as $k
 ightarrow \infty$

 $\forall i, j \le n \quad (1 - \varepsilon) \|A_i - A_j\|_2 \le \|A'_i - A'_j\|_2 \le (1 + \varepsilon) \|A_i - A_j\|_2$

[Johnson & Lindenstrauss, 1984]

The shape of a set of points

- Lose dimensions but not too much accuracy Given $A_1, \ldots, A_n \in \mathbb{R}^m$ find $k \ll m$ and points $A'_1, \ldots, A'_n \in \mathbb{R}^k$ s.t. A and A' "have almost the same shape"
- What is the shape of a set of points?

congruent sets have the same shape

• Approximate congruence \Leftrightarrow distortion: A, A' have almost the same shape if $\forall i < j \le n \quad (1 - \varepsilon) \|A_i - A_j\| \le \|A'_i - A'_j\| \le (1 + \varepsilon) \|A_i - A_j\|$ for some small $\varepsilon > 0$

Assume norms are all Euclidean

Losing dimensions = "projection"

In the plane, hopeless

In 3D: no better

Johnson-Lindenstrauss Lemma

Thm.

Given $A \subseteq \mathbb{R}^m$ with |A| = n and $\varepsilon > 0$ there is $k \sim O(\frac{1}{\varepsilon^2} \ln n)$ and a $k \times m$ matrix T s.t.

$$\forall x, y \in A \quad (1 - \varepsilon) \|x - y\| \leq \|Tx - Ty\| \leq (1 + \varepsilon) \|x - y\|$$

If $k \times m$ matrix T is sampled componentwise from $N(0, \frac{1}{\sqrt{k}})$, then A and TA have almost the same shape

[Johnson & Lindenstrauss, 1984]

Sketch of a JLL proof by pictures

In practice

• Empirically, sample T very few times (e.g. once will do!) on average $||Tx - Ty|| \approx ||x - y||$, and distortion decreases exponentially with n

We only need a logarithmic number of dimensions in function of the number of points

Surprising fact:

k is independent of the original number of dimensions m

Subsection 3

More efficient clustering

Clustering Google images

[L. & Lavor, in press]

k-means without random projections

VHimg = Map[Flatten[ImageData[#]] &, Himg];

VHcl = Timing[ClusteringComponents[VHimg, 3, 1]]
Out[29]= {0.405908, {1, 2, 2, 2, 2, 2, 3, 2, 2, 3}}

Too slow!

k-means with random projections

Get["Projection.m"]; VKimg = JohnsonLindenstrauss[VHimg, 0.1]; VKcl = Timing[ClusteringComponents[VKimg, 3, 1]] Out[34]= {0.002232, {1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3}}

> From 0.405s CPU time to 0.00232s Same clustering

Works on the MSSC MP formulation too!

$$\min_{\substack{x,y,s \\ i \leq n}} \sum_{i \leq n} \sum_{j \leq d} \|Tp_i - Ty_j\|_2^2 x_{ij}$$

$$\forall j \leq d \qquad \qquad \frac{1}{s_j} \sum_{i \leq n} Tp_i x_{ij} = Ty_j$$

$$\forall i \leq n \qquad \qquad \sum_{j \leq d} x_{ij} = 1$$

$$\forall j \leq d \qquad \qquad \sum_{i \leq n} x_{ij} = s_j$$

$$\forall j \leq d \qquad \qquad y_j \in \mathbb{R}^m$$

$$x \in \{0,1\}^{nd}$$

$$s \in \mathbb{N}^d$$

where T is a $k \times m$ random projector replace Ty by y'

Works on the MSSC MP formulation too!

- where $k = O(\frac{1}{\varepsilon^2} \ln n)$
- ▶ less data, $|y'| < |y| \Rightarrow$ get solutions faster
- Yields smaller cMINLP

Random projections in MP

- Random projections work in many more MP settings
 - Linear Programming [Vu, Poirion, L. MOR, to appear]
 - Trust-region subproblem formulations [working paper]
 - SDP and SOCP [working paper]

Summary

Graphs and weighted graphs necessary to model data

- Computers can "reason by analogy" (clustering) Modularity clustering
- 2. Clustering on vectors allows more flexibility *k-means, MSSC*
- 3. Need to embed (weighted) graphs into Euclidean spaces *Metric embeddings, Distance Geometry*
- 4. High dimensions make clustering expensive/unstable *Distance resolution limit*
- 5. Use approximate projections to reduce dimensions *MDS/PCA*, *random projections*

Some of my references

- I. Vu, Poirion, L., Random Projections for Linear Programming, Math. Oper. Res., to appear
- 2. L., Lavor, Euclidean Distance Geometry: an Introduction, Springer, Zürich, in press
- Mencarelli, Sahraoui, L., A multiplicative weights update algorithm for MINLP, Eur. J. Comp. Opt., 5:31-86, 2017
- L., D'Ambrosio, *The Isomap algorithm in distance geometry*, in Iliopoulos et al. (eds.), *Proceedings of SEA*, LIPICS 75(5)1:13, Dagstuhl Publishing, 2017
- Dias, L., *Diagonally Dominant Programming in Distance Geometry*, in Cerulli et al. (eds.) Proceedings of ISCO, LNCS 9849:225-246, Springer, Zürich, 2016
- 6. L., Lavor, Maculan, Mucherino, *Euclidean distance geometry and applications*, SIAM Review, 56(1):3-69, 2014
- 7. Cafieri, Hansen, L., *Improving heuristics for network modularity maximization using an exact algorithm*, Discr. Appl. Math., 163:65-72, 2014
- 8. L., Lavor, Mucherino, *The DMDGP seems easier on proteins*, in Mucherino et al. (eds.) *Distance Geometry: Theory, Methods, and Applications*, Springer, New York, 2013
- 9. Aloise, Hansen, L., *An improved column generation algorithm for minimum sum-of-squares clustering*, Math. Prog. A 131:195-220, 2012
- Aloise, Cafieri, Caporossi, Hansen, Perron, L., Column generation algorithms for exact modularity maximization in networks, Phys. Rev. E, 82(4):046112, 2010
- L., Cafieri, Tarissan, *Reformulations in Mathematical Programming: A Computational Approach*, in Abraham et al. (eds.) *Foundations of Computational Intelligence* vol. 3, SCI 203:153-234, Springer, Heidelberg 2009
- 12. Lavor, L., Maculan, *Computational Experience with the Molecular Distance Geometry Problem*, in Pintér (ed.) *Global Optimization: Scientific and Engineering Case Studies*, Springer, Berlin, 2006