
111/23/17

Securing Network Application Deployment
in Software Defined Networking

Yuchia Tseng, Farid Na t-Abdesselam, and Ashfaq Khokharı ı

11/23/17 2

Outline

● Introduction to OpenFlow-based SDN
● Security issues of network application deployment in SDN
● Securing network application deployment in SDN
● Prototype evaluation
● Conclusion

Overview of OpenFlow-based SDN

Software-defined Networking(SDN)
● A new network paradigm decouples the control plane from the data plane
● Benefit : Provide centralized control and visibility over network
● Architecture

- 3 planes: Data plane, Control plane, & Application plane
- 3 interfaces: Southbound, Northbound, & Eastern/Western bound interfaces

Northbound interface
- OSGi, RESTful

Southbound Interface
- OpenFlow etc

Data plane
- network devices

Control plane
- SDN controller

Application plane
- network applications

C
o n

tr
ol

le
r

Eastern/Western
 interfaces

● Data plane
– Networking devices for forwarding packets

– Example: Open vSwitch, HP 2920/3500 Switch Series etc

● Control plane
– Network OS, or called SDN controller, running on general purpose HW & OS

– Example: OpenDaylight, ONOS, Floodlight, Ryu, NOX etc

● Application plane
– Networking applications installed on SDN controller to enable network becoming

intelligent

– Example: Firewall, Load balancer, and IDS etc

● Southbound interface
– Communication protocol between data plane & control plane

– Example: OpenFlow, NETCONF, Border Gateway Protocol (BGP), Open vSwitch Database
Management Protocol (OVSDB), MPLS Transport Profile (MPLS-TP) etc

● Northbound interface
– Application programming interfaces (APIs) between control plane & application plane

– Example: OSGi, native Java/Python APIs, RESTful APIs etc

● Eastern/western interfaces

Overview of OpenFlow-based SDN

● Controller uses OpenFlow to keep listening what happens on the data
plane, and then sends the network events to the application plane

● OpenFlow messages
● packet_in : send a captured packet to the controller (eg., a miss in the match tables)

● packet_out : inject packets into the data plane

● flow_mod : modify the state of an OpenFlow switch(eg., add a flow entry)

● port_mod : modify the state of an OpenFlow port

● port_status : indicate a change of port status

hello
packet_in
port_status
feature_res
error

hello
packet_out
flow_mod
port_mod
feature_req

C
on

tr
o l

le
r

Overview of OpenFlow-based SDN

Security Issues of Network Application Deployment in SDN

● If controller uses OpenFlow protocol to keep listening
what happens on the data plane

● How can the network applications KEEP LISTENING the
network events on the data plane through the SDN
controller ?
– Internal APIs, such as OSGi, Java/Python APIs
– External APIs, such as RESTful APIs(JSON-RPC)

● Security problem of using internal APIs
- Easier to be compromised by code injection

Floodlight crash by calling System.exit()

OpenDaylight crash by calling
System.exit()Floodlight memory leakage by

inserting data into list

Shin, S., Song, Y., Lee, T., Lee, S., Chung, J., Porras, P., Yegneswaran, V., Noh, J., and Kang, B. B. (2014). Rosemary: A
robust, secure, and high-performance network operating system, CCS ’14.

More problems: run infinite loop, create numerous threads,
listen to the network traffic, or insert code through JNI etc

Security Issues of Network Application Deployment in SDN

● Security problem of using external APIs
● Can be compromised by API abuse
● READ permission : Saturating the bandwidth of the northbound interface by using

infinite loop to request the northbound APIs
● ADD permission : Flow tables is limited. Eg., High-performance chips EZchip NP-4

stores 125 000 – 1 000 000 flow entries. The attacker can flush out the high priority
flow rules by the low priority ones

● UPDATE & REMOVE permission : The APIs can be used to compromise the higher
priority flow rule due to the coarse-grained access control

FLOODLIGHT ODL ONOS RYU

RAED Packet dropping Responding slower Packet dropping Responding slower

ADD Flow entry
limitation: 148223

Flow entry limitation:
140000

Flow entry limitation:
45000

UPDATE .../sal-flow:update-flow .../devices/<deviceId> .../flowentry/modify

REMOVE .../sal-flow:remove-flow ../flows/<deviceId>/<flowId> .../flowentry/clear/<dpid>

Tseng, Y., Pattaranantakul, M., He, R., Zhang, Z., and Naït-Abdesselam, F. (2017), Controller DAC:
Securing SDN Controller with Dynamic Access Control, ICC ’17.

Security Issues of Network Application Deployment in SDN

So, how to deploy network application securely for SDN controller?
● Internal APIs(OSGi, Java/Python APIs etc)?

➔ Malicious code injection…
● External APIs (JSON-RPC)?

➔ API abuse
➔ Hard to get the network events in real time

● IPC?
➔ System-level command injection, eg:

➔ Runtime.getRuntime().exec("shutdown ­s ­t 0");
➔ High complexity to deploy on the current existing controllers

C
o

n
tr

o
l le

r

Security Issues of Network Application Deployment in SDN

D
at

a
p l

an
e

co
n t

ro
lle

r

A
pp

 p
l a

ne

co
n t

ro
lle

r

Functional split of the SDN controller
& security-by-design

Securing Network Application Deployment in SDN

So, how to deploy network application securely for SDN controller?
● Internal APIs(OSGi, Java/Python APIs etc)?

➔ Malicious code injection…
● External APIs (JSON-RPC)?

➔ API abuse
➔ Hard to get the network events in real time

● IPC?
➔ System-level command injection, eg:

➔ Runtime.getRuntime().exec("shutdown ­s ­t 0");
➔ High complexity to deploy on the current existing controllers

C
o

n
tr

o
l le

r

Data plane controller
- Interpret the network rules ↔ OF entries
- Communicate with the data plane

Application plane controller
- Dedicate all the requests from the application plane
- Application authentication
- Application authorization (access control)
- Application resource isolation, control, & monitoring
- Message-driven service (instead of server-client mode)

D
at

a
p l

an
e

co
n t

ro
lle

r

A
pp

 p
l a

ne

co
n t

ro
lle

r

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

● Policy Engine: define high-level policy
● Parser: translate high-level policies to Access Controller & Resource Controller
● Resource Controller: control and monitor resource usage of network application
● Application Sandbox: isolate the resource usage of the network application
● Authentication module: authenticate the network application
● Access Controller: authorize the requests of network applications
● Message Broker: provide message-driven service to network applications

Securing Network Application Deployment in SDN

Json for Marathon framework

ACLs for Kafka server

High-level policy in YAML

Prototype Evaluation

Access Controller
- App 1 can read DeviceInfo messages
- App 1 is rejected to read Configuration messages

Resource Controller
- An application contains a malicious loop to keep inserting data in a HashMap

When the code runs on the runtime of
controller (JVM for Floodlight), after 1
minute, the controller can no longer
serve the data plane.

When the code runs in the sandbox
(Docker with 0.2 CPU & 128 RAM), the
controller keeps serving the data plane.

Prototype Evaluation

Resource usage monitoring dashboard (implemented on Floodlight)
● System-level resource usage
● JVM-level resource usage
● Application sandbox resource usage

Prototype Evaluation

The average processing time for delivering 10 thousands packet_in messages from
the data plane controller to 1-10 network application(s)

Processing time for delivering 20 thousands packet_in messages to 1-10 network applications

Testbed configuration

Prototype Evaluation

Conclusion

Problems
● How to deploy network applications securely on the SDN controller?

Solution
● Functional split of the SDN controller & security-by-design
● Application controller:

➔ Resource Controller: resource isolation, control, and monitoring → against
code injection and command injection

➔ Message Broker + Access Controller → against API abuse

Preliminary results
● This architecture can implement in the existing SDN controller by adding a new

module (agent)
● The latencies keeps around 5 milliseconds in long term for delivering to 10 network

applications

11/23/17 24

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

