

Base Band Unit Function Split Placement in Cloud Radio Access Networks: Mathematical Programming Approach

Niezi Mharsi^{1,2}, *Makhlouf Hadji*¹, *William Diego*³ and *Ruby Krishnaswamy*³

¹ Institut de Recherche Technologique SystemX, Paris-Saclay, France

² Institut Mines Telecom – Telecom ParisTech, Paris, France

³ Orange Labs, Chatillon, France

I. Motivation

Cloud Radio Access Network : Cloud-RAN

Cloud-RAN Benefits :

- \checkmark Meeting the exponential growth in data traffic demand.
- ✓ Reduce the capital and operating expenditures.
- ✓ Improve the capacity and the coverage of mobile communication systems.

Cloud-RAN Architecture :

Three main components

- BBU pool is composed of BBUs which operate as virtual base stations.
- RRHs is a set of antennas located at the remote sites.
- Fronthaul Network connects the RRHs to the BBU pool and requires high bandwidth and low-latency.

II. Problem Statement (1/3)

BBU Function Split & Placement in Cloud-RAN

✓ This split is outlined as the best option in 3GPP

3GPP split option

meeting.

II. Problem Statement (2/3)

BBU Function Split & Placement in Cloud-RAN

II. Problem Statement (3/3)

BBU Function Split & Placement in Cloud-RAN

CONFIDENTIEL

Sust

The BBU function split & placement problem has some similarities to the

Virtual Network Embedding (VNE) problem : By relaxing sequencing order

constraints between the layers of each chain, the problem becomes NP-

hard, so does the BBU function split placement.

III. Mathematical Approach (2/3)

Integer Linear Program (for Small and Medium size network)

$$\min \sum_{k \in \mathscr{A}} \sum_{j \in \mathscr{V}} \sum_{j' \in \mathscr{P}(j)} \sum_{i \in \{1,2\}} L_{(j,j')} y_{(i,i+1);(j,j')}^k - \sum_{j \in \mathscr{V}} \left(C_j z_j - \sum_{k \in A} \sum_{i \in \mathscr{V}_v} c_i^k x_{i,j}^k \right).$$

$$\sum_{j \in \mathscr{V}_1} \mathbb{1}_{(k,j)} x_{1,j}^k = 0, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V}$$
$$\sum_{j' \in \mathscr{P}(j)} y_{(i,i+1);(j,j')}^k = x_{i,j}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V}$$

 $\sum_{i \in \mathscr{V}} x_{i,j}^k = 1, \forall k \in \mathscr{A}, \forall i \in \{1, 2, 3\}$

 $\sum_{k \in \mathscr{A}} \sum_{i \in \{1,2,3\}} x_{i,j}^k \times c_i^k \leq C_j, \forall j \in \mathscr{V}$

$$x_{i,j}^k \leq \sum_{j' \in \mathscr{P}(j)} x_{i+1,j'}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V}$$

 $\sum_{j \in \mathscr{V}} y_{(i,i+1);(j,j')}^{k} = x_{i+1,j'}^{k}, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j' \in \mathscr{P}(j)$

$$\sum_{j' \in \mathscr{P}(j)} y_{(i,i+1);(j,j')}^k = x_{i,j}^k, \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V}$$

 $\sum_{j \in \mathscr{V}} \sum_{j' \in \mathscr{P}(j)} y_{(i,i+1);(j,j')}^k = 1, \forall k \in \mathscr{A}, \forall i \in \{1,2\}$

 $L_{(j,j')} \times y_{(i,i+1);(j,j')}^k \le l_{(i,i+1)}^k, \ \forall k \in \mathscr{A}, \forall i \in \{1,2\}, \forall j \in \mathscr{V}, \forall j' \in \mathscr{P}(j)$

$$x_{i,j}^k \leq z_j, \forall j \in \mathscr{V}, \forall k \in \mathscr{A}, \forall i \in \mathscr{V}_v$$

III. Mathematical Approach (3/3)

Heuristic Approach : Multi-stage Graph Algorithm

RLC d_1 : PHY PDCP +MAC 9 RLC d_2 : PHY PDCP +MAC RLC d_3 : PHY PDCP +MAC

<u>Step 1:</u>

Sort all the requested demands according to the total amount of requested CPU(In this example, start by d_2)

<u>Step 2 :</u>

Create the multistage graph and find the optimal mapping of BBU functions

<u>Step 3 :</u>

- ✓ If the demand d₂ is deployed, update the number of CPU cores.
- ✓ If the demand is not deployed, then the demand (total graph of all the chains) is rejected.

A multi-stage approach example

IV. Numerical Results (1/3)

Algorithms Performance Comparison : ILP Vs Heuristic variants

			Euclidean	Random
			Graph	Graph
	#Edge		Cost Gap	Cost Gap
#Antennas	Clouds	Variant	(%)	(%)
		min-min	0	3.07
	10	min-max	0	0
	10	max-min	2.96	2.62
		max-max	0	0
		min-min	0	2.79
60	15	min-max	0	0
00	15	max-min	2.24	2.22
		max-max	0	0
		min-min	1.88	2.11
	20	min-max	0	0
	20	max-min	2.05	1.94
		max-max	0	0
		min-min	2.49	3.08
	10	min-max	0	0
	10	max-min	2.64	2.56
		max-max	Graph Cost Gap (%) 0 0 2.96 0 0 2.96 0 0 2.24 0 2.24 0 2.05 0 2.49 0 2.64 0 2.92 0 2.3 0 2.55 0 1.87 0	0
		min-min	2.92	2.76
80	15	min-max	0	0
00	15	max-min	2.3	2.32
		max-max	0	0
		min-min	2.55	2.28
	20	min-max	0	0
	20	max-min	1.87	2.0
		max-max	0	0

	TABLE I			
ALGORITHMS	PERFORMANCE COMPARISON :	ILP	VS HEURI	STIC
	VARIANTS			

		1	11	
	#Edge	Heuristic	Heuristic	ILP Exacution
#A ntennas	Clouds	Variant	Time (s)	Tima
#/ the finds	Ciouds	variant	2.25	THIC
		min-max	2.25	
	10	mm-max	2.49	29.11mi
		max-min	4.35	
		max-max	2.87	
		min-min	2.98	
100	15	min-max	3.26	33.47 min
100		max-min	6.17	
		max-max	4.00	
		min-min	4.19	
	20	min-max	3.98	42 85mi
	20	max-min	7.99	42.051111
		max-max	4.86	
		min-min	42.51	
	10	min-max	-	1.121
	10	max-min	82.15	>120
		max-max	35.43	
		min-min	<1min	
200	15	min-max	-	
		max-min	<2min	>15h
		max-max	43.01s	
		min-min	<1min	
		min-max		
	20	max-min	<2min	>16h
		max max	<1min	
i I		max-max	< 1000	I

TABLE II SCALABILITY AND CONVERGENCE TIME COMPARISON USING EUCLIDEAN GRAPHS

IV. Numerical Results (2/3)

Algorithms Performance Comparison : ILP Vs Heuristic variants

Algorithms' convergence time for random graphs with 20 edge nodes

Algorithms Performance Comparison : ILP Vs Heuristic variants

Number of Antennas

ILP Vs Heuristic : CPU Residual resources behavior

ILP Vs Heuristic : Latency behavior

- ✓ For BBU function split placement problem, we have proposed an optimization which can be solved by ILP.
- ✓ For a large network size, we have proposed an heuristic algorithms based on the construction of an extended multi-stage graph.
- ✓ The heuristic approach provides a near optimal or optimal solution in a negligible time even for large instances.

THANKS FOR

YOUR ATTENTION

niezi.mharsi@irt-system.fr

