Post hoc sed non propter hoc

or, Why You Should Think About Causality

Stefan Haar

INRIA and LSV CNRS & ENS Cachan

Seminar SystemX, Sep 9, 2016

Why Causality ?

- Example: Fault Diagnosis in Telecommunications
- So, what is needed ?

2 Discrete Events, Partially ordered: Occurrence nets

- Testing Causality
- Diagnosis with Concurrency

3 Beyond Precedence

- What Concurrency can reveal
- Weak Diagnosis

4 Conclusion

Post hoc sed non propter hoc

1 Why Causality ?

- Example: Fault Diagnosis in Telecommunications
- So, what is needed ?

Discrete Events, Partially ordered: Occurrence nets

3 Beyond Precedence

4 Conclusion

Fault Diagnosis in Telecommunications

Supervision SDH ring (Benveniste, Fabre, Haar et al, 2001 etc)

Telecom Supervision: Fault Propagation

... but one observes only dots, not arrows

Asynchrony between occurrence and observation

A synchrony + Distribution

The Post hoc ergo propter hoc fallacy

Description (from changingminds.org)

• If X follows Y, then X is caused by Y. (The sequence of things proves cause.)

Examples

- The man pulled out a gun. A shot was fired. Therefore the man fired the shot.
- You used the telephone and then it stopped working. You broke the phone.
- I am feeling very unwell. It must have been the meal last night.

Discussion

- Just because something follows something else, this is not sufficient evidence to prove true cause and effect. This temporal relationship may simply be coincidence.
- Coincidence is often related to superstition hence saying 'bless you' when someone sneezes (it is assumed that sneezing lays a person open to spiritual attack) or throwing salt over your shoulder when you spill it (it is assumed to cause bad luck otherwise).

So, what is needed ?

Observation is not enough

- Confront observations with a model of possible behaviours
- The model should contain all the information on causal dependencies, and nothing else

Modelling abstraction

- Separate the crucial functionalities and model only them
 - In the TIC example: ignore traffic, focus on fault propagation
- Drop non-crucial quantities (yes, including time stamps !)
- Be skeptical about time and aware of space
- Post hoc $\not\rightarrow$ propter hoc:
 - Partial order of causality vs total order of time

Example cont'd: SDH Laser Failure

Generic model for Managed Object

Combining Objects in Scenarios

From Scenarios to Petri Nets

From such situations ...

... retain such pictures and analyse them !

Correlate observation with causal model

• will use Petri nets with partial order semantics

Post hoc sed non propter hoc

Why Causality ?

2 Discrete Events, Partially ordered: Occurrence nets

- Testing Causality
- Diagnosis with Concurrency

3 Beyond Precedence

4 Conclusion

Petri net:

Petri net:

Petri net:

Petri net:

Petri net:

- *Process:* representation of a non-sequential run as a partial order.
- *Branching process:* representation of several runs.

Unfolding: maximal branching process.

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality
$$\leq e \leq f \quad \stackrel{\text{def}}{\Leftrightarrow} \quad e \; F^* \; f \; (\text{directed path from } e \; \text{to} \; f)$$

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality \leq		
$e \leq f$	$\stackrel{\mathit{def}}{\Leftrightarrow}$	$e \ F^* \ f$ (directed path from e to f)
Conflict #		
$e \ \#_d \ g \ f \ \# \ h$	$\overset{def}{\Longleftrightarrow} \overset{def}{\longleftrightarrow}$	$e \neq g \land {}^{\bullet}e \cap {}^{\bullet}g \neq \emptyset$ $\exists e \leq f, g \leq h : e \ \#_d g$

Nets and Structural Relations

The structure of a net induces three relations over its nodes:

Causality
$$\leq$$

 $e \leq f \iff e F^* f$ (directed path from e to f)
Conflict #

$$\begin{array}{l} e \ \#_d \ g \stackrel{\text{\tiny def}}{\Leftrightarrow} & e \neq g \land {}^{\bullet}e \cap {}^{\bullet}g \neq \emptyset \\ f \ \# \ h \ \stackrel{\text{\tiny def}}{\Leftrightarrow} & \exists e \leq f, g \leq h : e \ \#_d \ g \end{array}$$

Concurrency co

$$\begin{array}{ccc} f \hspace{0.1cm} \textit{co} \hspace{0.1cm} i \hspace{0.1cm} \stackrel{\text{\tiny def}}{\Leftrightarrow} \hspace{0.1cm} \neg(i \hspace{0.1cm} \# \hspace{0.1cm} f) \land \neg(i \leq f) \land \neg(f \leq i) \end{array}$$

Occurrence Nets [Nielsen, Plotkin, Winskel, 1980]

Definition (Occurrence net)

An occurrence net (ON) is a net (B, E, F) where B and E are the sets of *conditions* and *events*, and which satisfies:

- no self-conflict,
- 2 acyclicity
- Solution in the equation of the equation is a set of the equation of the equation in the equation is a set of the equation of the equation is a set of the equation of the equation is a set of the equation of the equation is a set of the equation of the equation of the equation is a set of the equation of the equ
- no backward branching for conditions,
- $\bot \in E$ is the only \leq -minimal node (event \bot creates the initial conditions).

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is a *maximal* (w.r.t. \subseteq) configuration.

Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the *weakly fair* (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *weak fairness*

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is a *maximal* (w.r.t. \subseteq) configuration.

Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the *weakly fair* (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *weak fairness*

Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

- causally closed: $\forall e \in \omega, \lceil e \rceil \subseteq \omega$,
- conflict free: $\forall e \in \omega, \#[e] \cap \omega = \emptyset$.

A run is a *maximal* (w.r.t. \subseteq) configuration.

Notation

 Ω denotes the set of maximal runs.

Interpretation

 Ω gives exactly the *weakly fair* (nonsequential) executions:

• No transition remains enabled for ever (i.e. without firing, or being disabled by a conflicting transition): *weak fairness*

Using Occurrence Nets

A Data Structure representing Causality

- No arrow chain, no causal link (see below however)
- Concurrency as the dual of causality

Fields

- Testing (next)
- Diagnosis for Telecom supervision (later)
- Verification of programs (not here)
- Systems Biology (not here)
- ... (you name it)

Testing causality (H. Ponce de Leon et al, since \sim 2011)

Example

PN model ...

... and its partial order of events

Why Causality ?

Traces

Use for checking conformance with specified causality (and concurrency)

Test Cases

Use for checking conformance with specified causality (and concurrency)

Concurrency in Specification

Causality in Testing

Asynchronous Testing with PNs

- Avoids concurrency pitfalls (observability etc) known from multi-channel testing over FSM
- Can:
 - test for respect of causal dependencies from specifications
 - tolerate ordering of some concurrently specified events ('don't care'-concurrency)
 - test for respect of intended or strong concurrency

Testing for concurrency: Vector clocks

Testing for concurrency: Vector clocks

Diagnosis with Concurrency

Back to the Telecom Example

- PN model of fault propagation
- one or more strings of alarms
- correlate via product
- filter out *partially ordered* explanations (configurations)
- Supposing Diagnosability (another long subject...)

Telecom Supervision

Diagnosis with unfoldings

A Success Story

- Causal/Concurrency model adequat
- ... and efficient: store only partial order, not all its interleavings
- Scales up wrt growing number of parts
- Allows distribution
- Run successfully on ring supervision platform
- Handles centralized and distributed monitoring

Can do more

- Partial order structures reveal dependencies and implication across parallel processes
- $\bullet~\mathsf{Exploited}$ in weak diagnosis $\to \mathsf{NEXT}$

Post hoc sed non propter hoc

Why Causality ?

2 Discrete Events, Partially ordered: Occurrence nets

3 Beyond Precedence

- What Concurrency can reveal
- Weak Diagnosis

Conclusion

Some actions reveal one another

z prevents y_1 ... and therefore makes x inevitable:

z reveals $x : z \triangleright x$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

$d \triangleright a$,

 $h \triangleright \bot$,

$a \triangleright d$

because of weak fairness,

$a \triangleright c$

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $\begin{array}{c} d \triangleright a, \\ h \triangleright \bot, \end{array}$

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

$$\begin{array}{rcl} a \in \omega & \Rightarrow & b \notin \omega \\ & \Rightarrow & c \in \omega \text{ (weak fairness)} \end{array}$$

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Causal closure

 $\forall x,y \in E \text{, } x \leq y \Rightarrow y \triangleright x$

 $d \triangleright a$,

 $h \triangleright \bot$,

 $a \triangleright d$

because of weak fairness,

$a \triangleright c$

because for any maximal run ω , $a \in \omega \implies b \notin \omega$

 $\Rightarrow c \in \omega$ (weak fairness)

Definition (Reveals relation ▷)

Event e reveals event f, written $e \triangleright f$, iff $\forall \omega \in \Omega, (e \in \omega \Rightarrow f \in \omega)$.

Lemma

Lemma: Characterization of Ω by # A set of events ω is a maximal run iff

 $\forall a \in E, a \notin \omega \Leftrightarrow \#[a] \cap \omega \neq \emptyset$

where $\#[e] \stackrel{\text{\tiny def}}{=} \{ f \in E \mid f \# e \}.$

Characterization of \triangleright by

 $\forall e, f \in E, e \triangleright f \Leftrightarrow \#[f] \subseteq \#[e]$ i.e. any event that could prevent the occurrence of f is prevented by the occurrence of e.

Facets Abstraction [H2010,BCH2011]

Definition (Facets)

A facet of an ON is an equivalence class of $\sim = \triangleright \cap \triangleright^{-1}$.

Facets Abstraction [H2010, BCH2011]

Definition (Facets)

A facet of an ON is an equivalence class of $\sim = \triangleright \cap \triangleright^{-1}$.

facets can be contracted into events

Reduced ON] Contracting Facets yield (bigger) events for a reduced ON reduced ON is an ON (B, Ψ, F) such that $\forall \psi_1, \psi_2 \in \Psi, \ \psi_1 \sim \psi_2 \Leftrightarrow \psi_1 = \psi_2$.

Concurrency vs Logical Independency [BCH2011]

• #, \leq and co are mutually exclusive.

Structural relations and logical dependencies

- $a \ \# \ b \Leftrightarrow$ for any run ω , $\{a, b\} \not\subseteq \omega$.
- $a \leq b \Rightarrow$ for any run ω , $b \in \omega \Rightarrow a \in \omega$ $(b \triangleright a)$,
- Does *a co b* mean *a* and *b* are logically independent ?

No, they can be related by \triangleright .

 $c \ co \ a \ and \ c \triangleright a$ $a \ co \ b \ and \ a \ ind \ b.$

Concurrency vs Logical Independency [BCH2011]

• #, \leq and co are mutually exclusive.

Structural relations and logical dependencies

- $a \ \# \ b \Leftrightarrow$ for any run ω , $\{a, b\} \not\subseteq \omega$.
- $a \leq b \Rightarrow$ for any run ω , $b \in \omega \Rightarrow a \in \omega$ $(b \triangleright a)$,
- Does a co b mean a and b are logically independent ?
 No, they can be related by ▷.

 $c \ co \ a \ and \ c \triangleright a$ $a \ co \ b \ and \ a \ ind \ b.$

Independency relation *ind*

$$\begin{array}{ll} \forall a,b \in \Psi, \ a \ ind \ b \\ \Leftrightarrow \end{array} \begin{array}{l} \neg(a \ \# \ b) \land \neg(b \triangleright a) \land \neg(a \triangleright b) \\ \Leftrightarrow & a \ co \ b \land \neg(b \triangleright a) \land \neg(a \triangleright b) \end{array} \end{array}$$

• #, \triangleright and *ind* are also mutually exclusive.

Extended Reveals Relation

Definition (Extended reveals relation)

Let A, B be two sets of facets. A reveals B, written $A \rightarrow B$, iff $\forall \omega \in \Omega, A \subseteq \omega \Rightarrow B \cap \omega \neq \emptyset$.

Properties

•
$$\{a\} \rightarrow \{b\} \Leftrightarrow a \triangleright b$$

• Conflicts can be expressed with this extended reveals relation: $\{a, b\} \rightarrow \emptyset \Leftrightarrow a \ \# b.$

Extended Reveals Relation

Examples

$$A \twoheadrightarrow B \hspace{3mm} \Leftrightarrow \hspace{3mm} \forall \omega \in \Omega, A \subseteq \omega \Rightarrow B \cap \omega \neq \emptyset$$

$$\begin{array}{l} \{c,e\} \twoheadrightarrow \{a\} \\ \{c,d,e\} \twoheadrightarrow \{a\} \\ \{e',e\} \twoheadrightarrow \emptyset \end{array}$$

 $\begin{array}{l} \{a,b\} \twoheadrightarrow \{c',c,d\} \\ \{a\} \twoheadrightarrow \{c,d\} \\ \emptyset \twoheadrightarrow \{a,a'\} \end{array}$

Diagnosis: Sequential Semantics Misses a Point

Suppose that

- $T_O = \{b, y\}$
- $\Phi = \{v\}$

v will be correctly diagnosed if y occurs. What if not ? If

 $bbbbbb \dots$

is observed, what do we infer about \boldsymbol{v} ?

It's about weak fairness !

Still with

• $T_O = \{b, y\}$ • $\Phi = \{v\}$

the only way for the system to do b^{ω} is to be *unfair* to v: always enabled, never fired *HERE: diagnosis under weak fairness*

Extended Reveals+Diagnosis

Application

- $A \rightarrow B$ iff ρ 's containing A must hit B
- Used for *weak diagnosis*: Given an observation pattern α , are *all* weakly fair extensions of explanations of α faulty ?

Weak Diagnosis

Observation pattern α weakly diagnoses fault ϕ iff

 $C \in expl(\alpha) \Rightarrow C \Rightarrow E_{\phi}$

Weak Diagnosis

Spoilers

Let $t \in T$. The set of t's *spoilers* is $spoil(t) \stackrel{\text{\tiny def}}{=} \{t' \in T \mid \bullet t' \cap \bullet t \neq \emptyset\}.$

Note : $t \in spoil(t)$!

Weak Fairness

A run $\rho = M_0 t_1 M_1 t_2 \dots$ is weakly fair iff every transition t enabled in some M_k is disabled in some M_{k+j} ; that is, eventually one of t's spoilers fires !

Lemma

There is ω weakly-fair and fault-free iff there are configurations C_1, C_2 such that:

- 2 $mark(\mathcal{C}_1) = mark(\mathcal{C}_2)$
- C₂ is fault-free

Solving the weak diagnosis problem Weak Diagnosis Problem

$$C \in expl(\alpha) \stackrel{???}{\Longrightarrow} C \twoheadrightarrow E_{\phi}$$
(*)

- Take a marking-complete prefix B₁
- Stop unfolding at sp-cutoff events e, i.e. there is e' < e s.th. , for $D \stackrel{\rm def}{=} [e] \backslash [e'],$
 - $f({}^{\bullet}D \setminus D^{\bullet}) = f(D^{\bullet} \setminus {}^{\bullet}D)$ and $B_1 \cap {}^{\bullet}D = \emptyset$,

I.e. e and e' spoil exactly the same events enabled by configurations from B_1 .

Decision method

Prefixes needed

- P_{α} : contains all *succinct* explanations of α
- P¹: marking-complete
- P^2 : contains all *non-sp-cutoffs*; $P^1 \sqsubseteq P^2$

ALL ARE FINITE !!

Encoding in SAT

$$\begin{aligned} & config(l,\mathcal{P}) \stackrel{\text{\tiny def}}{=} (\bigwedge_{e \in E} \bigwedge_{e' \in \bullet \bullet e} (v_e^l \Rightarrow v_{e'}^l)) & \wedge \\ & (\bigwedge_{c \in B, \{e_1, \dots, e_n\} = c^{\bullet}} amo(v_{e_1}^l, \dots, v_{e_n}^l)) & \wedge & (\bigwedge_{c \in B} v_c^l \Leftrightarrow (\bigwedge_{e \in \bullet c} v_e^l \wedge \bigwedge_{e \in c^{\bullet}} \neg v_e^l)) \end{aligned}$$

- Similarly : configuration containment, reachability, enabling, spoiling, explanation,...
- Diagnosis checkable with SAT solvers

Post hoc sed non propter hoc

Why Causality ?

2 Discrete Events, Partially ordered: Occurrence nets

3 Beyond Precedence

Causality is more informative than time

Modelling abstraction

- In the causal partial order model, dependence relations are local
- Spurious 'ordering' from observation avoided
- Often: computation time + space gained
- Always: conceptual error avoided
- Causal precedence implies temporal one, but not the other way around
- Be skeptical about time and aware of space

Fields that should be causality-aware

- Telecom, Web services
- Supervision of Networks
- Forensics
- Business (and other) processes

A Partial To Do list (for research)

Diagnosis

- Pursue *active* diagnosis: if observation is insufficient, force more significant output
- Be sure to do *save* active diagnosis: don't force occurrence of a fault only so you can diagnose it
- Generalize reveals to probabilities

Process Mining

- Infer or improve causal models via log analysis
- Separate causal from spurious

Food for thought

$\mathsf{Time} \leftrightarrow \mathsf{Causality} ?$

- Philosophical definitions of causality tend to use temporal precedence ;
- Conversely, time is captured via causal chains: ???
- Indirect causalities ('*reveals*') may transcend temporal orderings and jump between causal chains;
- however, weak fairness was needed to capture them, i.e. a temporal property is at the heart of *reveals*;
 - moreover, thus far we need vector clocks to test strong concurrency;
- Maybe time and causality are inextricable ?
- Remark: do not confound causality and inference

Thanks

Thanks to

- Albert Benveniste, Eric Fabre and Armen Aghasaryan
- Agnes Madalinkski and Victor Khomenko
- Sandie Balaguer and Thomas Chatain
- Delphine Longuet and Hernán Ponce de León
- Stefan Schwoon, César Rodríguez and Christian Kern

• ...

• and last but not least you !

References

- H. Ponce de León, S. Haar and D. Longuet. Model-based Testing for Concurrent Systems: Unfolding-based Test Selection. Int. J.n Software Tools for Technology Transfer, 2015.
- V. Germanos, S. Haar, V. Khomenko and S. Schwoon. Diagnosability under Weak Fairness. ACM Transactions in Embedded Computing Systems 14(4:69), 2015.
- H. Ponce de León, S. Haar and D. Longuet. Model-Based Testing for Concurrent Systems with Labeled Event Structures. STVR 24(7), 558-590, 2014.
- S. Haar, C. Kern and S. Schwoon. Computing the Reveals Relation in Occurrence Nets. Theoretical Computer Science 493, pages 66-79, 2013.
- S. Balaguer, Th. Chatain and S. Haar. Building Occurrence Nets from Reveals Relations. Fundamenta Informaticae 123(3), pages 245-272, 2013.
- S. Haar. What topology tells us about diagnosability in partial order semantics. Discrete Event Dynamic Systems 22(4), pages 383-402, 2012.
- E. Fabre and A. Benveniste. Partial Order Techniques for Distributed Discrete Event Systems: why you can't avoid using them. *Discrete Event Dynamic systems* 2007.
- P. Baldan, Th. Chatain, S. Haar and B. König. Unfolding-based Diagnosis of Systems with an Evolving Topology. Information and Computation 208(10), pages 1169-1192, 2010.
- S. Haar. Types of Asynchronous Diagnosability and the Reveals-Relation in Occurrence Nets. IEEE Transactions on Automatic Control 55(10), pages 2310-2320, 2010.
- E. Fabre, A. Benveniste, S. Haar and C. Jard. Distributed monitoring of concurrent and asynchronous systems. Discrete Event Dynamic Systems 15(1), pages 33-84, 2005.
- A. Benveniste, E. Fabre, S. Haar and C. Jard. Diagnosis of Asynchronous Discrete Event Systems: A Net Unfolding Approach. IEEE Transactions on Automatic Control 48(5), pages 714-727, 2003.