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Fault Diagnosis in Telecommunications

Supervision SDH ring (Benveniste, Fabre, Haar et al, 2001 etc)
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Telecom Supervision: Fault Propagation

... but one observes only dots, not arrows
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Asynchrony between occurrence and observation
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Asynchrony + Distribution

7/53



Why Causality ? Discrete Events, Partially ordered: Occurrence nets Beyond Precedence Conclusion

The Post hoc ergo propter hoc fallacy

Description (from changingminds.org)

If X follows Y, then X is caused by Y. (The sequence of things proves cause.)

Examples

The man pulled out a gun. A shot was fired. Therefore the man fired the
shot.

You used the telephone and then it stopped working. You broke the phone.

I am feeling very unwell. It must have been the meal last night.

Discussion

Just because something follows something else, this is not sufficient evidence
to prove true cause and effect. This temporal relationship may simply be
coincidence.

Coincidence is often related to superstition – hence saying ’bless you’ when
someone sneezes (it is assumed that sneezing lays a person open to spiritual
attack) or throwing salt over your shoulder when you spill it (it is assumed to
cause bad luck otherwise).
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So, what is needed ?

Observation is not enough

Confront observations with a model of possible behaviours

The model should contain all the information on causal dependencies, and
nothing else

Modelling abstraction

Separate the crucial functionalities and model only them

In the TIC example: ignore traffic, focus on fault propagation

Drop non-crucial quantities (yes, including time stamps !)

Be skeptical about time and aware of space

Post hoc 6→ propter hoc:

Partial order of causality vs total order of time
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Example cont’d: SDH Laser Failure
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Generic model for Managed Object
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Combining Objects in Scenarios
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From Scenarios to Petri Nets
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From such situations ...
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... retain such pictures and analyse them !
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Correlate observation with causal model

will use Petri nets with partial order semantics
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Petri nets, Processes, Branching Processes and Unfoldings

Petri net:

•1

bc a

•

2

•4

d

•

3

place tokens

transition

Process: representation of a
non-sequential run as a partial order.

Branching process: representation of
several runs.

Unfolding: maximal branching process.
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Nets and Structural Relations

The structure of a net induces three relations
over its nodes:

Causality ≤

e ≤ f def⇔ e F ∗ f (directed path from e to f)

Conflict #

e #d g
def⇔ e 6= g ∧ •e ∩ •g 6= ∅

f # h
def⇔ ∃e ≤ f, g ≤ h : e #d g

Concurrency co

f co i
def⇔ ¬(i # f) ∧ ¬(i ≤ f) ∧ ¬(f ≤ i)

f

e

e ≤ f

f # h
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Occurrence Nets [Nielsen, Plotkin, Winskel, 1980]

Definition (Occurrence net)

An occurrence net (ON) is a net (B,E, F ) where
B and E are the sets of conditions and events,
and which satisfies:

1 no self-conflict,

2 acyclicity

3 finite causal pasts: ∀e ∈ E,

dee def
= {e′ : e′ ≤ e} is finite.

4 no backward branching for conditions,

5 ⊥ ∈ E is the only ≤-minimal node
(event ⊥ creates the initial conditions).

⊥
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Configurations and Runs

Definitions (Configurations and Runs of an ON)

A configuration is a set ω of events which is

causally closed: ∀e ∈ ω, dee ⊆ ω,

conflict free: ∀e ∈ ω,#[e] ∩ ω = ∅.
A run is a maximal (w.r.t. ⊆) configuration.

Notation

Ω denotes the set of maximal runs.

Interpretation

Ω gives exactly the weakly fair (nonsequential)
executions:

No transition remains enabled for ever (i.e.
without firing, or being disabled by a
conflicting transition): weak fairness

⊥

e
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Using Occurrence Nets

A Data Structure representing Causality

No arrow chain, no causal link (see below however)

Concurrency as the dual of causality

Fields

Testing (next)

Diagnosis for Telecom supervision (later)

Verification of programs (not here)

Systems Biology (not here)

... (you name it)
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Testing causality (H. Ponce de Leon et al, since ∼ 2011)
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Example
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PN model ...
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... and its partial order of events
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Traces

Use for checking conformance with specified causality (and concurrency)
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Test Cases

Use for checking conformance with specified causality (and concurrency)
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Concurrency in Specification
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Causality in Testing

Asynchronous Testing with PNs

Avoids concurrency pitfalls (observability etc) known from multi-channel
testing over FSM

Can:

test for respect of causal dependencies from specifications
tolerate ordering of some concurrently specified events (’don’t
care’-concurrency)
test for respect of intended or strong concurrency
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Testing for concurrency: Vector clocks
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Testing for concurrency: Vector clocks
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Diagnosis with Concurrency

Back to the Telecom Example

PN model of fault propagation

one or more strings of alarms

correlate via product

filter out partially ordered explanations (configurations)

Supposing Diagnosability (another long subject... )
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Telecom Supervision
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Diagnosis with unfoldings

A Success Story

Causal/Concurrency model adequat

... and efficient: store only partial order, not all its interleavings

Scales up wrt growing number of parts

Allows distribution

Run successfully on ring supervision platform

Handles centralized and distributed monitoring

Can do more

Partial order structures reveal dependencies and implication across parallel
processes

Exploited in weak diagnosis → NEXT
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Some actions reveal one another
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z prevents y1 ... and therefore makes x inevitable:
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Reveals Relation [Haar, 2010]

Definition (Reveals relation .)

Event e reveals event f , written e . f , iff ∀ω ∈ Ω, (e ∈ ω ⇒ f ∈ ω).

Causal closure

∀x, y ∈ E, x ≤ y ⇒ y . x

d . a,
h . ⊥,
a . d

because of weak fairness,
a . c

because for any maximal run ω,
a ∈ ω ⇒ b /∈ ω

⇒ c ∈ ω (weak fairness)

⊥

1 2
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3

d

7

b

4 5

e

8

f
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c
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Reveals Relation [Haar, 2010]
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Lemma: Characterization of Ω by # A set of
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Facets Abstraction [H2010,BCH2011]

Definition (Facets)

A facet of an ON is an equivalence
class of ∼ = . ∩ .−1.

[

Reduced ON] Contracting Facets yield
(bigger) events for a reduced ON
reduced ON is an ON (B,Ψ, F ) such
that ∀ψ1, ψ2 ∈ Ψ, ψ1 ∼ ψ2 ⇔ ψ1 = ψ2.

⊥
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Concurrency vs Logical Independency [BCH2011]

#, ≤ and co are mutually exclusive.

Structural relations and logical dependencies

a # b⇔ for any run ω, {a, b} 6⊆ ω.

a ≤ b⇒ for any run ω, b ∈ ω ⇒ a ∈ ω (b . a),

Does a co b mean a and b are logically
independent ?

No, they can be related by ..

a a′ c b′ b

ψ⊥

c co a and c . a
a co b and a ind b.

Independency relation ind

∀a, b ∈ Ψ, a ind b
def⇔ ¬(a # b) ∧ ¬(b . a) ∧ ¬(a . b)
⇔ a co b ∧ ¬(b . a) ∧ ¬(a . b)

#, . and ind are also mutually exclusive.
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Extended Reveals Relation

Definition (Extended reveals relation)

Let A,B be two sets of facets.
A reveals B, written A _ B, iff ∀ω ∈ Ω, A ⊆ ω ⇒ B ∩ ω 6= ∅.

Properties

{a}_ {b} ⇔ a . b

Conflicts can be expressed with this extended reveals relation:
{a, b}_ ∅ ⇔ a # b.
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Extended Reveals Relation
Examples

A _ B ⇔ ∀ω ∈ Ω, A ⊆ ω ⇒ B ∩ ω 6= ∅

c c′ d d′ee′

ψ⊥

ba

{c, e} _ {a}
{c, d, e} _ {a}
{e′, e} _ ∅

ψ⊥

bb′ a a′

cc′ d

{a, b} _ {c′, c, d}
{a} _ {c, d}
∅ _ {a, a′}
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Diagnosis: Sequential Semantics Misses a Point

Suppose that

TO = {b, y}
Φ = {v}

v will be correctly
diagnosed if y occurs.
What if not ? If

bbbbbb . . .

is observed, what do we
infer about v ?
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It’s about weak fairness !

Still with

TO = {b, y}
Φ = {v}

the only way for the
system to do bω is to be
unfair to v: always
enabled, never fired
HERE: diagnosis under
weak fairness
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Extended Reveals+Diagnosis

Application

A−−. B iff ρ′s containing A must hit B

Used for weak diagnosis:
Given an observation pattern α, are all weakly fair extensions of explanations
of α faulty ?

Weak Diagnosis

Observation pattern α weakly diagnoses fault φ iff

C ∈ expl(α) ⇒ C _ Eφ
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Weak Diagnosis
Spoilers

Let t ∈ T . The set of t’s spoilers is

spoil(t)
def
= {t′ ∈ T | •t′ ∩ •t 6= ∅}.

Note : t ∈ spoil(t) !

Weak Fairness

A run ρ = M0t1M1t2... is weakly fair iff every transition t enabled in some Mk is
disabled in some Mk+j ; that is, eventually one of t′s spoilers fires !
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Solving the weak diagnosis problem
Weak Diagnosis Problem

C ∈ expl(α)
???
=⇒ C _ Eφ (∗)

Take a marking-complete prefix B1

Stop unfolding at sp-cutoff events e, i.e. there is e′ < e s.th. , for

D
def
= [e]\[e′],
f(•D\D•) = f(D•\•D) and B1 ∩ •D = ∅,

I.e. e and e′ spoil exactly the same events enabled by configurations from B1.
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Decision method
Prefixes needed

Pα: contains all succinct explanations of α

P 1: marking-complete

P 2: contains all non-sp-cutoffs; P 1 v P 2

ALL ARE FINITE !!

Encoding in SAT

config(l,P)
def
= (

∧
e∈E

∧
e′∈••e

(vle ⇒ vle′)) ∧

(
∧

c∈B,{e1,...,en}=c•
amo(vle1 , . . . , v

l
en)) ∧ (

∧
c∈B

vlc ⇔ (
∧
e∈•c

vle ∧
∧
e∈c•
¬vle))

Similarly : configuration containment, reachability, enabling, spoiling,
explanation,...

Diagnosis checkable with SAT solvers
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Post hoc sed non propter hoc

1 Why Causality ?

2 Discrete Events, Partially ordered: Occurrence nets

3 Beyond Precedence

4 Conclusion
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Causality is more informative than time

Modelling abstraction

In the causal partial order model, dependence relations are local

Spurious ’ordering’ from observation avoided

Often: computation time + space gained

Always: conceptual error avoided

Causal precedence implies temporal one, but not the other way around

Be skeptical about time and aware of space

Fields that should be causality-aware

Telecom, Web services

Supervision of Networks

Forensics

Business (and other) processes
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A Partial To Do list (for research)

Diagnosis

Pursue active diagnosis: if observation is insufficient, force more significant
output

Be sure to do save active diagnosis: don’t force occurrence of a fault only so
you can diagnose it

Generalize reveals to probabilities

Process Mining

Infer or improve causal models via log analysis

Separate causal from spurious
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Food for thought

Time ↔ Causality ?

Philosophical definitions of causality tend to use temporal precedence ;

Conversely, time is captured via causal chains: ???

Indirect causalities (’reveals’) may transcend temporal orderings and jump
between causal chains;

however, weak fairness was needed to capture them, i.e. a temporal property
is at the heart of reveals;
moreover, thus far we need vector clocks to test strong concurrency;

Maybe time and causality are inextricable ?

Remark: do not confound causality and inference

51/53



Why Causality ? Discrete Events, Partially ordered: Occurrence nets Beyond Precedence Conclusion

Thanks

Thanks to

Albert Benveniste, Eric Fabre and Armen Aghasaryan
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Sandie Balaguer and Thomas Chatain

Delphine Longuet and Hernán Ponce de León

Stefan Schwoon, César Rodŕıguez and Christian Kern

...

and last but not least you !
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