

Trading off bandwidth for memory in a future, information-centric Internet

 \odot

Jim Roberts (IRT-SystemX)

2 October 2014

æ

Projet porté par

Labellisation principale

Labellisations secondaires

Soutien de collectivités territoriales

Campus Paris Saclay

 \bigcirc

Engineering the Internet

- the Internet is a "network of networks", a set of routers interconnected by links allowing communication between hosts
- the traffic engineer's task: how much capacity (eg, link bandwidth) and how it should be shared to satisfy demand

Engineering the Internet

- the Internet is a "network of networks", a set of routers interconnected by links allowing communication between hosts
- the traffic engineer's task: how much capacity (eg, link bandwidth) and how it should be shared to satisfy demand
- understanding a three-way relation between
 - demand: a succession of packet flows generated by diverse applications, typically modelled as a stochastic process
 - capacity: how much, but also how it is shared by different flows
 - performance: time to download, communication quality,... expressed in terms of probabilities

Engineering the Internet

- the Internet is a "network of networks", a set of routers interconnected by links allowing communication between hosts
- the traffic engineer's task: how much capacity (eg, link bandwidth) and how it should be shared to satisfy demand
- understanding a three-way relation between
 - demand: a succession of packet flows generated by diverse applications, typically modelled as a stochastic process
 - capacity: how much, but also how it is shared by different flows
 - performance: time to download, communication quality,... expressed in terms of probabilities
- this talk is about a traffic engineering issue in a future information-centric network

Outline

- 1. engineering an information-centric Internet
- 2. NDN: a proposed information-centric network architecture
- 3. modelling cache performance
- 4. evaluating the memory-bandwidth tradeoff

- more than 90% of Internet traffic is content retrieval
 - web pages, documents,... and videos
- network performance and costs are highly dependent on where the content is stored
 - eg, in remote servers or local cache memories

- more than 90% of Internet traffic is content retrieval
 - web pages, documents,... and videos
- network performance and costs are highly dependent on where the content is stored
 - eg, in remote servers or local cache memories

- more than 90% of Internet traffic is content retrieval
 - web pages, documents,... and videos
- network performance and costs are highly dependent on where the content is stored
 - eg, in remote servers or local cache memories

- more than 90% of Internet traffic is content delivery
 - web pages, documents,... and videos
- network performance and costs are highly dependent on where the content is stored
 - eg, in remote servers or local cache memories

- more than 90% of Internet traffic is content retrieval
 - web pages, documents, ... and videos
- network performance and costs are highly dependent on where the content is stored
 - eg, in remote servers or local cache memories
- what is the optimal memory-bandwidth tradeoff?
 - bigger caches means more hits and less network traffic
- can this tradeoff be achieved incrementally or do we need a new Internet architecture ?

Towards a new Internet architecture

• IP, the Internet Protocol, was designed some 40 years ago

- some brilliant design decisions
 - connectionless packet switching, the "end-to-end principle", a layered architecture,...
- but continuing success may be due more to Moore's law
 - increasing processing power, middle boxes, overlays, over-provisioning,...
- the Internet was not designed for present needs...
 - from 200 hosts in 1980 to more than 10⁹ in 2014
 - from messaging, Telnet, FTP... to Web, social networks, video,...
- ... leading to some serious problems
 - viruses, attacks, phishing, identity theft, cyber crime,...
 - unreliable performance, difficult mobility management,...
 - a network hard to engineer, operate and troubleshoot
 - an improvised business model

Incremental change or a "clean slate" design

• since 2005, much world-wide research on new Internet architectures, deliberately ignoring the existing network

Incremental change or a "clean slate" design

- since 2005, much world-wide research on new Internet architectures, deliberately ignoring the existing network
- proposals include:
 - new architectural principles (eg, other than layering)
 - network virtualization
 - improved network management
 - ...
 - a network focused on content retrieval
- two major trends emerge from this effort
 - software-defined networks (virtualization, network management)
 - information-centric networking (content retrieval)
- the first is not clean slate, some argue the second can also be realized by incremental changes to IP

Outline

- 1. engineering an information-centric Internet
- 2. NDN: a proposed information-centric network architecture
- 3. modelling cache performance
- 4. evaluating the memory-bandwidth tradeoff

Named data networking (NDN)

- initially proposed by Jacobson et al. (Palo Alto Research Center) as content-centric networking (CCN), currently developed in NSF project called NDN
- instead of addresses, packets have names
 - users request a content chunk (eg, 4KB) with an Interest packet
 - network returns each requested chunk in a Data packet
- content chunks are cached in NDN routers

Forwarding in an NDN router

- a Forwarding Information Base (FIB) indicates useful output(s) for every name received in Interest packets
- a Pending Interest Table (PIT) records requesting input for each Interest until Data packet is received
- a Content Store (CS) temporarily caches returned Data

NDN saves bandwidth

- a content chunk cached in the CS can be downloaded directly
 - on receipt of Interest, first check content store
- simultaneous multicasting (eg, live video) realized using PIT entry
 - if content chunk name is already in PIT, do not send Interest, add new input for future Data transmission

A new ICN architecture or enhanced IP?

- Information-centric networking (eg, NDN) has compelling advantages over IP
 - saves bandwidth through deferred and simultaneous multicast
 - simplifies mobility management
 - facilitates network security by data encryption, as necessary
- on the other hand,
 - the Internet already saves bandwidth by caching: so-called Content distribution networks (CDNs) are already widely deployed
 - name-based forwarding brings severe scalability issues
 - currently there are no "killer applications" that make ICN (eg, NDN) an obvious winner
- the choice partly depends on cost-effectiveness
 - how should one engineer a network of caches?
 - what exactly is the memory-bandwidth tradeoff?

Outline

- 1. engineering an information-centric Internet
- 2. NDN: a proposed information-centric network architecture
- 3. modelling cache performance
- 4. evaluating the memory-bandwidth tradeoff

Engineering a content cache

- demand: a request process for content items of different popularities
- capacity: size and a replacement policy to keep most useful items in cache
- performance: the "hit rate" = proportion of requests served by cache

The Internet traffic mix

- in 2014, more than 96% of Internet traffic is content
- video counts for 60%, file sharing 20%, web, etc 20%
- video includes YouTube, Netflix, live video, webcams,...
- vast catalogues
 - ~10¹¹ web pages $\approx O(1 \text{ petabyte})$, ie, 10¹⁵ bytes
 - ~10⁶ torrents $\approx O(1 \text{ petabyte})$
 - ~10⁸ YouTubes $\approx O(1 \text{ petabyte})$
 - ~10⁴ VoD items $\approx O(1 \text{ terabyte})$, ie, 10¹² bytes
- but highly skewed demand
 - a relatively small number of highly popular items
 - popularity typically follows a generalized Zipf law...

Zipf popularity

- popularity is measured by request arrival rate
- measurements reveal popularity decreases as a power law:
 - request rate of n^{th} most popular object $\propto 1/n^{a}$
 - typically, $\alpha \approx 0.8$

Zipf popularity

- popularity is measured by request arrival rate
- measurements reveal popularity decreases as a power law:
 - request rate of n^{th} most popular object $\propto 1/n^{\alpha}$
 - typically, $\alpha \approx 0.8$

Zipf popularity

- popularity is measured by request arrival rate
- measurements reveal popularity decreases as a power law:
 - request rate of n^{th} most popular object $\propto 1/n^{\alpha}$
 - typically, $\alpha \approx 0.8$

Modelling the request process: the independent reference model (IRM)

- assume a fixed catalogue of N objects
- requests arrive sequentially and any request is for object **n** with probability $\propto q(n)$ for $1 \le n \le N$
 - eg, q(n) = $1/n^{\alpha}$
- ignores time locality, ie, assumes catalogue and popularities remain fixed over time
- a problem arises when trying to estimate q(n)
 - reliable statistics require long measurement periods
 - but catalogue and object popularities change
- the law for torrents avoids the time locality problem but ignores space locality since torrent trackers are global

Replacement policies

- when a cache is full, some objects must be removed to make room for new ones, eg,
 - least recently used (LRU): replace the object that has not been requested for the longest time
 - random: replace any object chosen at random
 - least frequently used (LFU): only cache the most popular objects
- LFU is optimal among policies that cannot see into the future
- LRU appears as a reasonable compromise between complexity and performance
 - objects are indexed by a linked list that evolves at each request arrival

...

Calculating LRU hit rates (Che et al., 2002)

- cache size C objects, popularity of object $n \propto q(n)$
- assume "independent reference model" or, equivalently, Poisson request arrivals at rate q(n) for object n
- "characteristic time" T_c is time for C different objects to be requested
- assume random variable T_c is approximately deterministic, $T_c \sim t_c$
- then, hit rate for object n is $h(n) = 1 exp\{-q(n)t_c\}$
- now, $C = \sum_{n} \mathbf{1} \{ \text{object n is in cache} \}$
- taking expectations, $C = \sum_{n} h(n) = \sum_{n} (1 \exp\{-q(n)t_{c}\})$
- solving numerically for t_c yields h(n)
- the approximation is very accurate and we know why (Fricker, Robert & Roberts, 2012)

LRU hit rate for $q(n) = 1/n^{\alpha}$

- strong impact of Zipf parameter α

LRU cache performance

- strong impact of Zipf parameter $\boldsymbol{\alpha}$
- strong impact of object population N

LRU cache performance

- strong impact of Zipf parameter $\boldsymbol{\alpha}$
- strong impact of object population N

Outline

- 1. engineering an information-centric Internet
- 2. NDN: a proposed information-centric network architecture
- 3. modelling cache performance
- 4. evaluating the memory-bandwidth tradeoff

In-network caching or caches at the edge only?

- in NDN, caches are distributed through the network
 - given a "cache budget", the optimal distribution depends on cooperative placement policy and Interest forwarding strategy
- recent research suggests the difference between the optimum and simply caching at the edge may only be slight
 - depending on policy, strategy and supposed demand model

In-network caching or caches at the edge only?

- in NDN, caches are distributed through the network
 - given a "cache budget", the optimal distribution depends on cooperative placement policy and Interest forwarding strategy
- recent research suggests the difference between the optimum and simply caching at the edge may only be slight
 - depending on policy, strategy and supposed demand model
- the cache budget is a key parameter but this is not a given
 - eg, if memory is very cheap, edge caching is clearly preferable
 - the optimal cache budget in fact depends on the memory-bandwidth tradeoff

Tradeoff at the edge

- a simple symmetric network model
- cost of edge caching = $C \times S \times k_m$
 - C = cache size, S = number of sites, k_m = unit cost of memory
- cost of bandwidth = $T \times m(C) \times k_b$
 - $T = total demand (bit/s), m(C) = miss rate, k_b = unit cost of bandwidth$

Tradeoff at the edge

- example data
 - empirical popularity law for torrents
 - N = 1.6 petabyte, T = 1 Tb/s, S = 100
 - k_m = .15 € per GB per month, k_b = 15 € per Mb/s per month

Costing the tradeoff

Costing the tradeoff

Costing the tradeoff

Observations on tradeoff

- key factor is $\Gamma = Tk_b / SNk_m$ where N is catalogue size
 - Γ = max bandwidth cost/ max storage cost

Observations on tradeoff

- key factor is $\Gamma = Tk_b / SNk_m$ where N is catalogue size
 - Γ = max bandwidth cost/ max storage cost
- rarely advantageous to optimize cache size
 - if $\Gamma \ll 1$, no low level cache
 - if $\Gamma \gg 1$, cache (almost) all at low level

Observations on tradeoff

- key factor is $\Gamma = Tk_b / SNk_m$ where N is catalogue size
 - Γ = max bandwidth cost/ max storage cost
- rarely advantageous to optimize cache size
 - if Γ << 1, no low level cache
 - if $\Gamma \gg 1$, cache (almost) all at low level
- cost trends $\Rightarrow \Gamma$ is increasing with time
 - k_m decreases by 40% each year
 - k_b decreases by 20% each year
- there is scope for optimizing position of edge caches
 - S large for small catalogue (eg, VoD, N = $O(10^{12})$)
 - S small for large catalogue (eg, torrents, etc, N = $O(10^{15})$)

Is the future Internet a network of data centers?

- edge routers become data centers, storing huge amounts of content and performing multiple data processing functions, including routing
- still scope for caching in the access network, typically for limited size catalogues like VoD
- an active area of current research

Outline

- 1. engineering an information-centric Internet
- 2. NDN: a proposed information-centric network architecture
- 3. modelling cache performance
- 4. evaluating the memory-bandwidth tradeoff
- conclusions

- traffic engineering and the Internet
 - relating demand, capacity and performance
 - for capacity planning and effective resource sharing
 - a new caching dimension for an information-centric network
- the Internet has become information-centric
 - new architectures are proposed (eg, Named Data Networking)
 - though IP might still be made to evolve
- cache performance is critical in information-centric networks
 - depends on content catalogue size and popularity distributions
 - Che: a method for calculating the hit rate for LRU replacement
- optimal structure depends on the memory-bandwidth tradeoff
 - caching at the edge appears better than in-network caching
 - with scope for specialized caches in the access network